
Osama M. Raisuddin
Suvranu De

Quantum 
Computing 
for Engineers

Raisuddin · De
Quantum

 Com
puting for Engineers



Quantum Computing for Engineers



Osama M. Raisuddin · Suvranu De 

Quantum Computing 
for Engineers



Osama M. Raisuddin 
Future of Computing Institute 
Rensselaer Polytechnic Institute 
Troy, NY, USA 

Suvranu De 
Florida A&M University-Florida State 
University College of Engineering 
Tallahassee, FL, USA 

ISBN 978-3-032-03324-6 ISBN 978-3-032-03325-3 (eBook) 
https://doi.org/10.1007/978-3-032-03325-3 

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature 
Switzerland AG 2026 

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether 
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse 
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and 
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar 
or dissimilar methodology now known or hereafter developed. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
The publisher, the authors and the editors are safe to assume that the advice and information in this book 
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or 
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any 
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations. 

This Springer imprint is published by the registered company Springer Nature Switzerland AG 
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland 

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-032-03325-3


Preface 

Quantum computing is a rapidly emerging field. As researchers entering the field 
from outside traditional domains, such as theoretical physics or computer science, 
we found the landscape both rich and fragmented—dense with promise but dif-
ficult to navigate without a cohesive, application-oriented framework. This book 
was born from our own attempts to cross that threshold from classical computa-
tional methods into quantum computing—not as physicists, but as computational 
engineers—and to build a practical bridge for others who wish to do the same. 

While several introductory texts exist, they often assume prior exposure to 
quantum theory or computational complexity. Our aim is different: to build a 
bridge from classical engineering and scientific computing to quantum algorithms, 
without sacrificing technical depth. This book adopts an applied, algorithmic 
perspective, integrating mathematical foundations, computational models, and 
real-world applications. 

The book is organized into seven parts, each divided into focused chapters. 
These chapters are intended to be modular and self-contained, allowing instructors 
or readers to adapt them to different learning paths or interests:

• Part I: Mathematical and Computational Preliminaries 
Foundational material in linear algebra, probability, and numerical methods, 
tailored to the quantum context.

• Part II: A Brief Introduction to Quantum Mechanics 
Core quantum phenomena presented through key experiments, emphasizing 
physical intuition.

• Part III: Elements of Quantum Computing 
The computational framework of quantum computing—qubits, gates, circuits, 
and measurement.

• Part IV: Programming Quantum Computers 
Practical aspects of working with quantum systems, including software stacks, 
noise, and available libraries.

• Part V: Algorithmic Primitives, Subroutines, and Frameworks 
Reusable algorithmic components that form the building blocks of more 
advanced methods.
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• Part VI: Quantum Algorithms 
Complete quantum algorithms for solving problems in linear algebra, differen-
tial equations, and optimization.

• Part VII: Applications, Future Directions, and Open Problems 
Case studies in engineering and finance, along with discussions on open 
challenges and research frontiers. 

Each chapter develops a coherent topic, moving from concept to method to appli-
cation, often supported with example code or pseudocode. Conceptual explanations 
are supplemented with figures, algorithmic breakdowns, and Python-based imple-
mentations using Qiskit. Where relevant, mathematical derivations clarify the 
underlying logic, and code examples reinforce the connection between theory and 
practice. Our goal is to equip readers with both the theoretical foundation and 
practical tools necessary to engage with quantum computing in an engineering 
context, whether for research, development, or curriculum design. 

By the end of this book, readers will have a solid understanding of the prin-
ciples of quantum computation, be able to model and implement core quantum 
algorithms, and critically assess where quantum methods can offer computational 
advantages. They will also gain familiarity with quantum programming environ-
ments and be prepared to pursue further work in both applied and theoretical 
directions. 

The book assumes familiarity with undergraduate-level linear algebra, prob-
ability theory, algorithmic reasoning, and computational problem-solving. Prior 
exposure to quantum mechanics is not required; the essential physical principles 
are introduced in Part II. Familiarity with Python programming is recommended 
for engaging with the hands-on components. 

All code examples in this book use Python and the Qiskit software stack. Python 
was selected for its widespread use in scientific and engineering computing, and 
Qiskit offers a well-supported platform for constructing and simulating quantum 
circuits. While Qiskit adopts little-endian indexing for qubits, we retain big-endian 
notation in equations and figures for mathematical clarity. These conventions are 
made explicit where relevant. 

Supplementary code and figures are available at https://github.com/osamarais/ 
QuantumComputingForEngineers. These resources are designed to support both 
independent learners and instructors using this book in the classroom. 

Suggested Paths for Different Readers 

This book is intended to be accessible to a broad engineering and scientific audi-
ence with a background in linear algebra and basic programming. Readers with 
different goals may choose to navigate it differently:

https://github.com/osamarais/QuantumComputingForEngineers
https://github.com/osamarais/QuantumComputingForEngineers
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• For engineering students and newcomers to quantum computing, Parts I–III 
provide the necessary foundation, and Parts IV–V introduce core programming 
and algorithmic tools.

• For researchers and advanced practitioners, Parts V–VII offer in-depth treat-
ments of quantum algorithmic frameworks and applications, with references to 
the underlying theory where needed.

• For instructors, each chapter can serve as a standalone module in an advanced 
undergraduate- or graduate-level course. The modular structure allows for flex-
ible integration into existing curricula in computing, applied mathematics, or 
engineering. 

We hope this book serves as both a foundation and a launchpad for those begin-
ning their journey into quantum computing, and for those aiming to apply it 
meaningfully in engineering and scientific domains. 

Troy, NY, USA 
Tallahassee, FL, USA 

Osama M. Raisuddin 
Suvranu De
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Part I 

Mathematical and Computational 
Preliminaries 

This part provides a focused overview of the mathematical foundations required to 
engage with quantum computing in the context of this book. The Dirac notation is 
adopted from the outset, and concepts are introduced in chapters with an emphasis 
on their relevance to quantum algorithms, rather than as exhaustive treatments. 

The first few chapters provide an overview of some key mathematical concepts 
required for the remainder of this book. These chapters are meant as a refresher, 
not a comprehensive course. Readers seeking a deeper dive into mathematics may 
wish to consult standard texts in those areas. Our focus is on presenting just enough 
background to support the development of later topics. We also provide context 
and motivation for each concept, highlighting connections to quantum computing 
or quantum physics. Readers are encouraged not to dwell too deeply on these 
connections at this stage; many will be revisited and expanded upon in later parts. 
This part builds on the following chapters. 

Chapter 1, “Linear Algebra and Probability”, presents the essential mathemat-
ical tools—linear algebra and probability—that form the backbone of quantum 
computation. 

Chapter 2, “Polynomial Approximations”, introduces techniques for approxi-
mating functions with polynomials, both at a point and over an interval, which are 
foundational for understanding several advanced quantum algorithms. 

Chapter 3, “Theory of Computing”, introduces fundamental concepts from clas-
sical computation, including Turing machines and universal circuit families, along 
with examples of computable and incomputable problems. 

Chapter 4, “An Overview of Practical Classical Computing”, connects abstract 
models to hardware, covering transistors, logic gates, and the translation from 
high-level code to machine instructions. 

Chapter 5, “Information and Complexity Theory”, introduces classical com-
plexity classes (P, NP, and BPP) and the quantum class BQP, motivating quantum 
speedups while grounding expectations. A concluding thought experiment links 
information theory to thermodynamics.
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https://doi.org/10.1007/978-3-032-03325-3_2
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1Linear Algebra and Probability 

Linear algebra and probability are foundational requirements for quantum com-
puting and are sufficient for understanding and analyzing basic concepts and 
algorithms in quantum computing. This chapter is a brief overview and refresher 
of linear algebra and probability for the remainder of the book. 

We first introduce column and row vectors in the notation familiar to engineers 
and then transition to the Dirac or “bra-ket” notation used in quantum computing, 
which is the standard notation used in quantum computing literature. 

Subsequently, important matrix classes such as Hermitian, unitary, and orthog-
onal projection matrices are introduced with explanations of how they represent 
operations on a quantum state. These concepts are then connected to the expec-
tation values of a quantum state and the properties of valid expectation value 
operators. 

We then introduce the concept of measurements, which are mathematically 
expressed as projection operations in the simplest case and explain how measure-
ments correspond to sampling outcomes from a probability distribution determined 
by the probability amplitudes of a quantum state. 

We then transition to numerical problems involving matrices. We provide an 
overview of important matrix decompositions, including the eigenvalue transfor-
mation to diagonalize a matrix and the singular value decomposition, along with 
the commonly encountered eigenvalue problem. The condition number of matrices 
is shown to be an important property of matrices, which generally has implications 
for the cost and precision of a solution. 

The linear system of equations problem is presented with a discussion of two 
major classes of algorithms to solve it: direct solvers and iterative solvers. 

We end the chapter by introducing the Krylov subspace and Kronecker product 
of matrices with some relevant properties.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
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4 1 Linear Algebra and Probability

Vectors, Bras, Kets, and Dirac Notation 

A vector v ∈ CN is an element of an N -dimensional linear space of complex 

vectors, CN , with entries vi ∈ C, and can be written as v = 
N−1 

i=0 
vie i where ei is 

the i  t  h standard basis vector. 
In quantum mechanics, vectors are typically expressed using Dirac notation, 

also known as bra-ket notation. A “ket,” written as |ψ , represents the state of a 
quantum system. In finite-dimensional systems like those in gate-based quantum 
computing, a ket is simply a complex column vector in CN . 

Quantum states are normalized, meaning that their squared magnitude is 1. Kets 
can be written in any orthonormal basis, and the label | ψ denotes a specific state 
in that basis. The most common basis in quantum computing is the computational 
basis, consisting of states | 0 , | 1 ,  .  .  .  , |N − 1 , which correspond to the standard 
basis vectors in CN , e.g., 

| 0 = 1 
0 

, |1 = 0 
1 

∈ C2

This basis is sometimes called the Z-basis, as it is the set of eigenstates of the 
Pauli-Z operator. 

Qubits are the quantum computational analog of classical bits, i.e., 0 or 1. 
Another commonly used label is an integer i ∈ W, which represents a quantum 
state corresponding to the i  t  h standard basis vector 

|i = e i

Note that this notation does not conflict with the notation introduced earlier for 
computational bits when i = 1 or 0. An arbitrary vector v may be represented in 
Dirac notation (after normalization) as 

|v = 1 √
v†v 

N −1 

i=0 
vi|i 

where the “dagger” symbol † denotes the conjugate transpose operation. 
A “bra” ψ | is the adjoint of a ket |ψ and can be represented as the row 

vector ψ | = (|ψ )†. For brevity, we often refer to an arbitrary bra or ket as ψ | 
and |ψ , respectively, with elements ψi ∈ C where normalization is implied: 

|ψ = 
i 

ψi|i , 
i 
|ψi| 2 = 1

Bras and kets must be normalized because they represent “probability ampli-
tudes” and, by extension, a probability distribution (and probabilities of all event 
outcomes must sum to 1). This normalization is often referred to as the Born rule.
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Probability amplitudes are different from probabilities. Probability amplitudes 
are complex numbers ψi ∈ C in the unit ball, i.e., |ψi| ≤ 1, whereas probabilities 
are real numbers pi ∈ R s.t. 0 ≤ pi ≤ 1. The probability corresponding to a 
probability amplitude may be computed as ψ∗

i ψi. Unlike probabilities, probability 
amplitudes allow quantum states to interact constructively or destructively. 

Quantum states such as |v and |w belong to a Hilbert space, a complex vector 
space equipped with an inner product. The inner product between two kets |v and 
|w is written as v | w and computed as 

v | w = 
N−1 

i=0 

v∗
i wi

This inner product corresponds to the overlap between the states. Physically, the 
squared magnitude v | w 2 gives the probability of obtaining an outcome |v 
when measuring a system in a state |w . 

Note: this requires definition of measurements, and the basis used for mea-
surement, which is explained in detail in Chap. 10: Quantum Measurements and 
Circuits. 

We note that if the bra and ket represent quantum objects in a continuous Hilbert 
space, they can be represented as functions over a support ω 

|v = v(ω )

w|  =  w∗ (ω)

for which a bra-ket represents an integral: 

v | w = v(ω)∗w(ω)d ω

and the bra and ket are normalized, i.e., 

v | v = v(ω)∗v(ω)dω = 1

w | w = w(ω)∗w(ω)dω = 1

To further explain the interpretation of quantum states as probability distributions, 
we first need to introduce matrices and matrix operations on quantum states. 

Linear operators acting on a Hilbert space may be expressed in terms of an 
outer product. Let |v and w| belong to Hilbert spaces V and W , respectively.
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Their outer product, written as |w v|, represents a linear operator from V to W , 
defined as 

(|w v|) v = v|v |w ∀ v ∈V

If |v = 
i 
vi|i in the standard basis, where vi i | v , then 

|v = 
i 

|i i | v = 
i 

(|i i|)|v = 
i 

|i i| |v

indicating that the identity matrix I = 
i 
|i i | as the above relationship holds for 

all |v . 
Similarly, if |w = 

j 
wj|j , then |w v| = 

i j 
viwj|i j| defines the matrix 

(linear operator) A with elements Aij = viw j. 
As an example, consider a general qubit state 

|ψ = α|0 + β|1 = α

β

and a linear operator constructed from outer products of the standard basis states: 

A = a|0 0| + b|0 1| + c|1 0| + d |1 1| 

= a 1  0  
0  0  

+ b 0  1  
0  0

+ c 0 0
1 0

+ d
0 0
0 1

= a b
c d

Applying A to |ψ yields 

A|ψ = a  b  
c  d  

α 
β 

= αa + βb 
αc + βd 

= (αa + βb)|0 + ( αc + βd)|1

Matrices 

A matrix A is an operator that can be applied to a vector to perform the map 

w = Av 

where w, v ∈ CN , A ∈ CN×N .
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When operating on a quantum state |ψ , it is necessary to maintain the normal-
ization of the quantum state according to the Born rule. Unitary matrices ensure 
that the Born rule is not violated. By definition, a unitary matrix U satisfies 

UU † = I 

Unitary matrices U ∈ CN × N belong to the mathematical group U (N ), referred 
to as a unitary group of degree N . Unitary matrices U ∈ CN × N such that det(U ) = 
1 (the determinant) belong to the mathematical group SU (N ), referred to as the 
special unitary group of degree N . Unitary matrices have several special properties: 

• Unitary matrices are 2-norm preserving, i.e., U |ψ 2 = 1 ∀ U ∈ U (N ), |ψ ∈
C
N . 

• Unitary matrices are normal, i.e., UU † = U †U = I . 
• The eigenvalues λi(U ) of a unitary matrix satisfy |λi(U )| = 1 ∀ i, and therefore 

|det(U )| = 1. 
• A unitary matrix is diagonalizable as U = VDV † where V and D are also 

unitary. 
• The product of two unitary matrices is also unitary. 
• Any unitary matrix can be written as a (non-unique) exponentiated Hermitian 

matrix U = e iH . 

Unitary matrices are important since they mathematically represent the manip-
ulation of a quantum state as a matrix–vector multiplication operation (without 
performing any sampling from the probability distribution or a measurement of 
the physical entity it represents). A particularly important property is that they 
are 2-norm preserving. If a ket represents a probability distribution, it must be 
normalized, and any manipulation of the ket must ensure ψ 2 = 1, which is 
automatically satisfied by unitary matrices. 

Hermitian matrices are another important class of matrices for quantum 
computing. By definition, a Hermitian matrix H ∈ CN× N satisfies 

H = H †

Hermitian matrices also possess some important properties: 

• The eigenvalues λi(H ) of a Hermitian matrix satisfy λi(H ) ∈ R ∀ i
• The exponentiation eiH of a Hermitian matrix is a (unique) unitary matrix 
• A Hermitian matrix is unitarily diagonalizable 
• The quadratic form of a Hermitian matrix vT Hv ∈ R ∀ v ∈ C

N is real 
ψ |H |ψ ∈ R ∀ |ψ ∈ C

N . 

Hermitian matrices play several important roles in quantum computing and quan-
tum mechanics. They define “observables” of a quantum object. An observable 
may be thought of as a measurable property of a physical object. In the context
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of quantum objects, an example would be whether an electron is observed to have 
a “spin up” or “spin down” configuration. Although quantum objects are math-
ematically represented in complex space, in the classical world we interact with 
them and measure them as real numbered quantities; therefore, it does not make 
sense for a single “observation” or “measurement” of any physical object to be 
a complex number; the observation or measurement is always real. This require-
ment is automatically satisfied by the fact that the quadratic form of Hermitian 
matrices is real for any |ψ . Mathematically, observables are defined as operators 
on bras and kets. The concept of observables and measurements will be revisited 
in Chap. 6, A Gentle Introduction to Quantum Mechanics, when introducing the 
postulates of quantum mechanics. 

Hermitian matrices are therefore suitable for defining observables of a quantum 
object. The expectation value of an observable with an operator H corresponding 
to a quantum state |ψ is mathematically defined as 

H ψ ψ |H |ψ 

This can be understood as follows: If a quantum mechanical system is known 
to be in some state |ψ , a series of measurements of an observable property 
(which corresponds mathematically to the observable operator H ) will have a 
mean/expectation value H ψ . 

Matrices can also be defined as positive-definite or positive-semidefinite. This is 
important for mathematically defining the energy of a physical object as a Hamilto-
nian H. A Hamiltonian of a physical system is a mathematical operator that returns 
the total energy of the system. As an example, the total energy E (an observable) 
of a quantum state |ψ is computed using the Hamiltonian H (operator for the 
observable E)  a  s

E = ψ |H|ψ 

Rotation and Reflection Matrices 

Unitary matrices in U (N ) can represent rotations and reflections, while the sub-
set SU (N ) only represents rotations. Rotation and reflection matrices can be 
distinguished by their determinants: det(U ) = 1 for rotation matrices while 
det(U ) =  −  1 for reflection matrices.
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Pauli Matrices and Pauli Basis 

Like vectors being expressed in terms of a set of basis vectors, matrices may also 
be represented in a matrix basis. A particularly important and useful basis for 
matrices is the Pauli basis formed by the Pauli matrices: 

σx = 0  1  
1  0  

,  σy = 0 −i 
i 0 

,  σz = 1 0
0 −1

Later in Chap. 9, Qubits, Quantum Registers, and Quantum Gates, we redefine 
these Pauli matrices as single-qubit gates. 

Together with the identity matrix (I ), the Pauli matrices form a complete basis 
for 2 × 2 matrices. Any such matrix can be written as 

A2×2 = α1I + α2σx + α3σy + α 4σz

where αi ∈ C. This result can be extended to any general matrix A ∈ C2n×2 n as 

A = 
1 

2n i1,i2,...,in 
αi1,i2,...,in σi1 ⊗ σi1 ⊗ .  .   . ⊗ σin

where σij ∈ I ,  σx,  σy, σz , αi1,i2,...,in ∈ C, and ⊗ denotes the Kronecker prod-
uct. Furthermore, we note that one may always express an arbitrary matrix as a 
Hermitian matrix using the Hermitian dilation of A: 

H = 0 A 
A† 0 

Chapter 13, Access Models and Data Representation, provides an example code 
to decompose matrices in the Pauli basis. 

Vector  and  Matrix  No  rms

Vectors and matrix norms are important metrics used in quantum computing. A 
p-norm of a vector for p ∈ Z + is defined as 

vp = 
i 
(vi)

p 
1/ p

Similarly, a norm may be defined for a matrix as an induced p-norm: 

A p = sup 
x 0 

Ax p
x p 

Of particular interest is the 2-norm, i.e., p = 2. In this book, whenever the norm 
is unspecified, it may be assumed to be the 2-norm.
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Condition Number 

The condition number of a matrix A is defined as 

κ(A) = sup 
v,w 

A−1v 

v 

w 

A−1w 
= A A−1 ≥ 1

The condition number of a matrix frequently arises in the analysis of quantum 
algorithms involving matrices, such as linear system solvers or ordinary differential 
equation solvers. A large condition number will often manifest itself as difficulties 
in solving a problem, either through a loss of digits of precision or the overall cost 
of a solver. 

We note the following important properties: 

• An equivalent definition of κ(A) is the ratio of the singular values σmax/σmin 
• For normal matrices (e.g., Hermitian and unitary matrices), κ(A) is equivalently 

defined as a ratio of the eigenvalues λmax / λmin 
• κ(A) = 1 for unitary matrices. 

For diagonalizable matrices A = V V †, ill-conditioning may arise from the ratio 
of the eigenvalues and/or the eigenvectors being approximately linearly dependent. 

Projectors 

An orthogonal projector P ∈ CN × N is a matrix such that 

P2 = P 

and 

P† = P 

We refer to orthogonal projectors simply as projectors (as opposed to non-
orthogonal or oblique projectors). 

Note: Orthogonal projectors are not orthogonal matrices. 
A projection matrix maps a vector v ∈ C N to a subspace CM s.t. M ≤ N and 

therefore rank(P) ≤ N , as shown in Fig. 1.1. Projectors are important for defin-
ing measurement operators in quantum computing. The eigenvalues of orthogonal 
projectors are λ(P) ∈ {0, 1}.
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Fig. 1.1 An orthogonal 
projector P ∈ R3× 3

projecting a vector v ∈ R 3
onto Pv 

Eigenvalue Problems 

Given a matrix A, an eigenvalue problem in linear algebra can be defined as. 
Find v,  λ  such that 

Av = λ v

where v is an eigenvector and λ is an eigenvalue. 
In matrix form this can be written as 

AV = V 

where is a diagonal matrix with the eigenvalues lying on the diagonal, and V is 
a matrix whose columns form the eigenvectors of A. 

A matrix may have a full set of eigenvectors, i.e., a unique eigenvector for each 
eigenvalue, in which case it can be diagonalized uniquely as 

A = V V †

If a matrix is Hermitian, it has orthogonal eigenvectors with real eigenvalues. How-
ever, not every normal matrix is Hermitian (e.g., unitary matrices are normal but 
can have complex eigenvalues such that |λi| = 1 ∀ i). Furthermore, not every 
non-singular matrix is diagonalizable; e.g., if a matrix has repeated eigenvectors, 
then it can be diagonalized using the Jordan normal form (e.g., a triangular matrix 
of 1’s). 

Note that non-singular Hermitian matrices commute, i.e., [A, B] = AB − BA =
0, iff they share the same eigenvectors. 

For normal matrices A⊥, one may define the condition number as 

κ(A⊥) = 
|λ max|
|λmin|
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This formula does not hold for non-normal matrices since the eigenvectors 
themselves may be ill-conditioned, i.e., they are not mutually orthogonal and 
κ(V ) > 1. 

It is important to note that, in general, for matrices with N > 4 a general 
formula or deterministic procedure to compute eigenvalues does not exist. This is 
because eigenvalues are the roots of the characteristic polynomial 

f (λ) = det(A − λ I)

where det(·) denotes the determinant and f (·) is a polynomial, and a closed-
form algebraic formula to compute the roots of a polynomial of degree > 4 has 
been shown not to exist according to the Abel–Ruffini theorem. Therefore, the 
computation of eigenvalues and eigenvectors in general must be iterative. 

We now briefly introduce the generalized eigenvalue problem. Given two sym-
metric matrices A and S (sometimes referred to as a linear matrix pencil (A, S )), 
a generalized eigenvalue problem can be defined as follows. 

Find v,  λ  such that 

Av = λ Sv

where v is a generalized eigenvector and λ is a generalized eigenvalue. 
The standard eigenvalue problem is a special case of the generalized eigenvalue 

problem with S = I . S is often referred to as an overlap matrix. 
Eigenvalue problems are of particular interest in engineering since they can 

be used to study the stability of dynamic systems and instabilities (e.g., buck-
ling) in static systems, solve ordinary differential equations, and tackle many other 
problems of practical interest. 

Singular Value Decomposition 

The singular value decomposition (SVD) of a matrix is defined as 

A = U V †

where U and V are matrices, whose columns are the left and right singular vectors, 
respectively, and is a diagonal matrix with the singular values σ ∈ [0, ∞) ∼ = R

+
lying on the diagonal, ordered from the largest to the smallest. The SVD is unique 
up to the signs of the singular vectors. 

The SVD is particularly powerful since it applies to every matrix, whether 
square or rectangular, singular or non-singular. The norm of any matrix and its 
inverse are 

A = σmax, A−1 = σmin
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Therefore, the condition number of a matrix is directly available from an SVD 
as 

κ = 
σ max
σmin 

The “most important subspace” of a matrix (and its inverse) containing the 
“bulk of the information,” in the 2-norm, corresponds to the largest (and the 
smallest) singular values. Furthermore, inverting a matrix using its SVD is particu-
larly straightforward, requiring two dense matrix multiplications and one diagonal 
matrix multiplication at most. 

The singular value decomposition is crucial for advanced quantum algorith-
mic frameworks, such as the quantum singular value transformation and quantum 
signal processing. 

Linear Systems of Equations 

A linear system problem, or a system of linear equations, is defined as. 
Given A ∈ CN ×N , b ∈ CN , find x ∈ CN s.t. 

Ax = b 

The linear system problem has a solution, or is well-posed, iff det(A) = 0 or 
equivalently: 

All singular values σ  >  0. 
All eigenvalues λ 0. 
A−1 exists. 
The linear system problem arises frequently in science and engineering. Robust 

and efficient solutions of linear systems are of paramount importance in scientific 
computing. There exist two broad classes of algorithms for solving systems: direct 
solvers and iterative solvers. 

Direct solvers for linear systems have a runtime that is known a priori, but 
have the disadvantage of scaling worse than iterative solvers in computational cost. 
Furthermore, direct solvers only provide a solution at the end of the computation, 
whereas iterative solvers can typically provide a useful partially converged solution 
before fully converging. 

Classical direct solvers, e.g., LU decomposition, require O N 3 operations in 
general to solve a dense linear system with N unknowns. Direct solvers with better 
asymptotic scaling have been discovered but are not practically implementable or 
useful due to large prefactors. 

Iterative solvers scale more favorably. Given an initial guess with error 
b − Ax0 = 0 , the conjugate gradient iterative solver scales as O

√
κN log N /˜ 

for positive-definite A and O
√

κN log N /˜ for indefinite A where ˜ = 0 is 
the relative decrease in solution error. More advanced iterative solvers, e.g., multi-
grid methods, require as little as O(N log ˜) floating-point operations (FLOPs).
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Table 1.1 Some common linear stationary iterative methods 

Method Iterative formula 

Richardson xn+1 = 
xn + ω(b − Ax n)

ω is a scalar parameter chosen for convergence 

Jacobi xn+1 = 
D−1(b − (L + U ) xn)

D, L,U are the diagonal, upper triangular, and lower 
triangular parts of A 

Gauss–Seidel Lxn+1 = b − Ux n

The crux of effective and efficient iterative solvers is exploiting the structure of 
the problem underlying the linear system. 

Quantum algorithms for linear systems have the potential to achieve an expo-
nential speedup in N . However, they scale linearly with κ at best. Improving the 
linear dependence of κ for specific problems of practical interest, e.g., sparse 
positive-definite matrices, is an active area of research. Quantum linear system 
algorithms are discussed in detail in Chap. 30, Quantum Linear System Algo-
rithms: Direct Methods, and Chap. 31, Quantum Linear System Algorithms: 
Iterative Methods. 

Linear Iterative Methods: Stationary Point Iterations 

A simple and straightforward way of solving linear systems iteratively is using a 
linear iteration whose stationary point is x. 

These iterations take the general form: 

xn+1 = f (xn )

where f (x) is an affine transformation. Richardson, Jacobi, and Gauss–Seidel 
methods are well-known and elementary techniques for solving linear systems 
iteratively and are summarized in Table 1.1. 

Stationary iterative methods converge if and only if the spectral radius of the 
iteration matrix (i.e., the largest absolute value of its eigenvalue) is less than 1. 
Although the convergence rate of linear stationary iterations can be prohibitively 
slow in general, preconditioning can be applied for faster convergence. 

Krylov Subspace Methods 

Krylov subspace methods are among the most powerful and robust techniques for 
solving linear systems. These methods work in the Krylov subspace, i.e., 

Kr(A, b) = span b, Ab, A2b,  .  .  .  ,Ar−1b
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built using matrix–vector products. Since a naïve application of matrix–vector 
products can lead to subspace vectors being ill-conditioned, an orthonormalization 
process, such as the Gram–Schmidt method, is typically performed in classi-
cal algorithms, which requires the computation of inner products, a nonlinear 
operation. 

The Krylov subspace can be applied to eigenvalue problems as shown in 
Chap. 29: Eigenvalue Problems. 

Kronecker Products 

Kronecker products arise frequently in quantum computing and have some 
important properties: 

Kronecker products are bilinear and associative: 

A ⊗ (B + C) = A ⊗ B + A ⊗ C

Kronecker products are non-commutative: 

B ⊗ A A ⊗ B

The matrices in a Kronecker product operate within their subspaces. This is 
evident from the mixed-product property: 

(A ⊗ B)(C ⊗ D) = AC ⊗ BD

This readily extends to eigendecompositions (if it exists for each matrix in the 
Kronecker product): 

A ⊗ B = VADAV 
† 
A ⊗ VBDBV 

†
B

A sum of Kronecker products of the form 

KAB = A ⊗ In + I m ⊗ B

where A ∈ Cm× m, B ∈ Cn× n can be exponentiated as 

exp(KAB) = exp(A) ⊗ exp(B).



2Polynomial Approximations 

Polynomial approximations are frequently used in developing and analyzing 
quantum algorithms. Advanced quantum algorithms, especially block encoding 
techniques and quantum signal processing, rely on polynomial approximations 
of analytic matrix functions. We summarize the main approximation tech-
niques, which fall into two categories: (1) pointwise approximations (e.g., Taylor 
expansions), and (2) uniform approximations over an interval (e.g., Chebyshev 
polynomial expansions). 

Approximation Around a Point 

Let f : D → C be an analytic function defined on an open set D ⊆ C, and let 
a ∈ D. The Taylor series of f about x = a is 

f (x) = 
∞ 

i=0 

f (i) (a)

i! (x − a )i

where f (i) denotes the i-th derivative of f . 
The degree-n Taylor polynomial, denoted as Tn(x), is defined by truncating the 

series: 

Tn(x) = 
n 

i=0 

f (i) ( a)
i! (x − a) i

The approximation error at x ∈ D is given by the remainder term, 

Rn(x) = f (x) − Tn(x) = 
f (n +1)(c)

(n + 1)! (x − a)n+1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
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for some c ∈ [a, x ]. The error bound is then 

|f (x) − Tn(x)| = |Rn(x)| ≤ sup 
c∈[a,x] 

f (n +1)(c)

(n + 1)! (x − a)n+1 

As n →  ∞  , the Taylor series converges to f (x) for all x within the radius of 
convergence [1]. 

Approximation Over an Interval 

Suppose we wish to approximate f uniformly on a closed interval [a, b ]. With-
out loss of generality, we may map [a, b ] to [−1, 1 ] via an affine transformation. 
For: [−1, 1] → R, a common approach is to expand f in terms of Chebyshev 
polynomials of the first kind, Tn(x)), defined as 

Tn(x) = cos(n arccos x), x ∈ [−1, 1 ], n ≥ 0

These polynomials satisfy the recurrence relations: 

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) − T n−1

The roots of Chebyshev polynomials of the first kind, also known as Chebyshev 
nodes, are the projections of n + 1 equally spaced points on a semicircle of unit 
radius onto its diameter, as shown in Fig. 2.1.

We may approximate f (x) over an interval as 

f (x) ≈ Pn(x) = 
n 

i=0 
αiT i(x)

To approximate a function f (x) in a Chebyshev basis, we first map the interval 
x ∈ [a, b ] to x̃ = 2x−(a+b )

b−a ∈ [−1, 1 ] to obtain f (x̃), and then sample f (x̃) at n + 1 
Chebyshev nodes. One may then fit the polynomial Pn(x̃) of degree n to the n + 1 
points x̃k , f (x̃k )|x̃k = cos 2k +1

2n π ∀ k ∈ [0, n] ⊂ Z . 

The Chebyshev approximation of a function bounds the approximation error f (x)− 
Pn(x ) in the max norm over an interval, i.e., max 

x∈[a,b] 
|f (x) − Pn(x )|. For the interval 

[a, b ], this is 

|f (x) − Pn(x)| ≤ 1

2n(n + 1)! 
b − a

2 

n+1 

max 
c∈[a,b] 

f (n+1) (c)
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Fig. 2.1 The placement of Chebyshev nodes is visualized as equidistant points on a semicircle 
projected onto its diameter

The Chebyshev approximation is typically considered to yield the minimax (best 
uniform) polynomial approximation for continuous functions over x ∈ [a, b ], 
achieving the smallest possible maximum error in the interval. However, this opti-
mality does not always hold for x /∈ [a, b ], the Chebyshev minimax polynomial 
may not minimize the approximation error, and, in certain cases, alternative poly-
nomial constructions can yield smaller errors outside the original interval [2]. 
Nevertheless, Chebyshev polynomials are widely used due to their robustness 
for analytic functions, and they can also provide good approximations for some 
non-analytic functions. The Remez exchange algorithm is an iterative method for 
constructing the minimax polynomial and can be used to compute the coefficients 
for the Chebyshev (and other minimax) approximations [3]. 

Analytic Functions of Matrices 

The concept of evaluating analytical functions may be extended to square matrices 
using a Taylor series approximation: 

f (A) ≈ 
n 

i=0 
αi A

i

where αi are the coefficients of the Taylor series approximation of f . 
If A is diagonalizable, one may use the diagonalization instead to compute f (A) 

exactly as 

f (A) = 
∞ 

i=0 
αiA

i = 
∞ 

i=0 
αi V V −1 i = 

∞ 

i=0 
αiV 

iV −1 

= V 
∞ 

i=0 
αi 

i V −1 = Vf ( )V−1.
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where is a diagonal matrix containing the eigenvalues λj, and f ( ) is a diagonal 
matrix with entries f λj on the diagonal. 

Matrix Exponentiation 

Exponentiation of a matrix A as eiA is an important task in quantum comput-
ing since it can exactly solve time-independent systems of ordinary differential 
equations, e.g., the time-dependent Schrödinger equation of an isolated quantum 
mechanical system. 

If the diagonalization of A is available, one may simply compute the matrix 
exponential as an analytical function of a matrix as discussed previously. However, 
the diagonalization of the system is typically not available, and is often intractable 
to compute for large N . Therefore, various approximations of matrix exponen-
tials have been developed, of which the most notable are Trotter–Suzuki formulas, 
Taylor series approximations, and quantum signal processing techniques. 

The problem of approximating a matrix exponential of the form eiH (or the 
operation of this matrix exponential on a ket |ψ ) where H is a Hamiltonian is 
known as a Hamiltonian simulation problem (for isolated systems). We deal with 
this topic in detail in Chap. 28: Hamiltonian Simulation Techniques. Here, we 
simply provide a mathematical introduction to the problem. 

Typically, H is a sparse matrix which can be expressed as a sum of 1-sparse 
terms Hi: 

H = 
i 
H i

and each Hi can be exponentiated individually in a straightforward manner. 
Exponentiating these 1-sparse terms can be done easily on a quantum computer. 

However, the fundamental problem arises in combining these individual terms. 
While for x, y ∈ C, ex+y = exe y, this holds for matrix exponentials if and only if 
A, B ∈ C N commute, i.e., if 

[A, B] = AB − BA = 0

is true, only then eA+B = eAe B. In most problems of practical interest, H cannot 
be expressed as a sum of commuting 1-sparse terms. 

For the general case of arbitrary A and B, the Baker–Campbell–Hausdorff 
(BCH) formula provides the exact result: 

eX eY = e Z

where 

Z = X + Y + 1

2 
[X , Y ] + 

1

12 
[X , [X , Y ]] − 1

12 
[Y , [X , Y ]] + . . .
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The Lie–Trotter (and Suzuki–Trotter) approximation [4] is one of the most well-
known and simplest methods for approximating a matrix exponential on quantum 
computers, for which the BCH formula provides error bounds. Details of Trot-
ter–Suzuki formulas are provided in Chap. 21: Trotterization. The Trotter–Suzuki 
method belongs to a class of techniques known as “product formulas,” and newer 
product formulas have also been discovered with improved error bounds [5–8]. 
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3Theory of Computing 

In this chapter, we provide an overview of the theoretical foundations of com-
puting, and, in the next chapter, we will present how these foundations come to 
fruition as modern electronic computers. 

Automata and Turing Machines 

We will begin our discussion with various types of automata, an abstract object 
that follows a sequence of instructions. An automaton may be built as a machine or 
could be a human following instructions in a “desultory manner.” One may estab-
lish a set of rules to describe various types of automata and study the limits of their 
computation. Ideally, we would like a device to be able to follow any sequence 
of instructions to compute any function that we can compute algorithmically. We 
will briefly study this problem by establishing a few automata and endowing them 
with properties until they are powerful enough to compute any function that has 
an algorithm to compute it. 

Perhaps the simplest form of an automaton is Combinational Logic. This can 
often be expressed as a Boolean expression or a Boolean Circuit as shown in 
Fig. 3.1.

The behavior of this automaton (the output) depends solely on the current 
inputs, regardless of any previous inputs. The limitations of a Combinatorial 
Logic automaton are quite obvious. Consider a Combinatorial Logic Automa-
ton that computes the parity of a binary string of length n. To compute the 
parity of a binary string s of length 2n bits with such an automaton, one 
may “remember” the result of the first and last n bits, and compute the parity 
as parity(parity(s[0 : n − 1]), parity(s[n : 2n − 1])). However, this automaton is 
incapable of any form of inference beyond its immediate input; it does not have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
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Fig. 3.1 A Combinational 
Logic statement and its 
equivalent logic circuit

any memory or a state dependent on a previous computation. Therefore, we cannot 
compute the parity of arbitrarily long strings solely with this automaton. 

However, it is imperative to note that for limited input and output sizes n and m 
respectively, there always exists a corresponding circuit for any arbitrary function 
f : {0, 1}n → {0, 1}m. Toward the end of this chapter, we will revisit this fact. 

One may form a more complex device by allowing the device to assume a finite 
number of states. This class of devices is known as finite state automata. These 
devices may assume a finite number of states and transition between them based 
on the current state and current input. They do not have a memory of previous 
states or how they arrived at their current state. 

Let’s describe a finite state automaton to compute the parity of strings. Our 
automaton can assume two states. qeven and qodd , corresponding to an even or odd 
parity. The automaton is initialized in the state qeven. The automaton accepts a 
binary bit x = 0 or x = 1, one at a time, as input. Whenever a binary x = 1 is 
input to the automaton, it will change its state from qeven to qodd and vice versa. 
Whenever a binary x = 0 is input to the automaton, it will not change its state. 
This is summarized in Fig. 3.2, which describes the state diagram and transition 
function δ : q, x → q. After initializing the automaton in the state qeven, all the 
bits of a string are fed to the automaton one by one, and, at the end, the state of 
the automaton indicates the parity of the bitstring. 

By simply equipping our device with a finite number of states, we have 
expanded its computational capability: a finite state automaton can compute the 
parity of an arbitrarily long binary string. But can a finite state automaton check 
whether an arbitrary binary string is balanced, i.e., whether the number of ones

Fig. 3.2 A finite state automaton for computing the parity of a string of bits 
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matches the number of zeros, or not with this form of automata? This is not pos-
sible, since this requires keeping track of the difference between the number of 
ones and zeros encountered in the string, and for an arbitrarily long string, this 
can require an infinite number of states to keep track of this difference! We have 
encountered a limitation of our automaton once again. 

We will now equip our automata with an idealized infinite memory. We are 
now arriving at a description of a deterministic Turing Machine [1], which we 
will simply refer to as a Turing machine for brevity. There are many subtly 
different descriptions of Turing machines, all of which are similar and equally 
powerful. Here, we will provide a description similar to [2] for intertextual conve-
nience and recommend the description of automata in [3] for readers interested in 
thoroughness. 

A Turing machine consists of the following elements, as visualized in Fig. 3.3: 

• Tape 
• Read–write tape head 
• Finite state control 
• Program. 

The tape in a Turing machine is infinitely long in one direction and is divided 
into squares. In the following, we adopt the convention that the tape stretches 
infinitely to the right. Each square can store one symbol from a set of possible 
symbols known as an alphabet .

Fig. 3.3 Schematic depiction of a Turing machine 
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At every step, the read–write tape head is positioned over a particular square. 
When the Turing machine is initialized, the read–write tape head is positioned over 
the leftmost square, and all information needed by the computation is written on 
a finite number of the leftmost squares of the tape, and the remainder of the tape 
is left blank. In each step, the read–write tape head reads the current square it is 
positioned on and 

1. writes the current square: → 
2. moves the head one square to the left or right, or remains stationary. This is 

described by the set of movements S : {−1, +1, 0}. 

The finite state control describes an internal state q ∈ Q of the machine (this does 
not include the square being read by the tape head), and the states are labeled as 
qi ∈ Q where the cardinality |Q| = m where m is sufficiently large and finite. 
There are two special states qs and qh, the start state and halt state, respectively. 
When the machine is initialized, the finite state control is in the state qs. When 
the machine enters a halt state qh (there may be multiple halt states), it ceases 
operation. 

Note that a Turing machine may loop forever! We will return to this issue later 
in the chapter. When a Turing machine does halt, to indicate the reason for the 
termination of a program it is important to indicate two subsets of Q: the accept 
states qa ∈ Qa ⊂ Q and reject states qr ∈ Qr ⊂ Q s.t. Qa ∩ Qr = ∅. A Turing 
machine will halt on these states. Using this terminology, a Turing machine can 
decide an input, i.e., accept or reject it. 

The program of a Turing machine is a list of program lines. To avoid any confu-
sion, we emphasize that, unlike typical modern computer programs we are familiar 
with, the sequence in which the program lines are presented is not necessarily the 
sequence of steps the Turing machine will step through. Instead, the program is 
better described as a transition function δ : Q → Q ,S and each program 
line is a quintuple q, x, q , x , s, where 

• q ∈ Q is the current state of the machine 
• x ∈ is the current symbol read by the read–write tape head 
• q ∈ Q is the next state of the machine 
• x ∈ is the symbol to be written in the current square 
• s ∈ S is the direction in which to move the read–write head. 

Execution of any program line is counted as one computational step (regardless of 
the lookup through all the program lines). If the machine encounters a state and 
tape square q, x for which it cannot match a program line, it will automatically 
enter the halting state qh. If the read–write head is on the leftmost square and is 
instructed to move further to the left, it will not move. 

The automaton we have described above may seem deceptively simple, but it 
captures the essence of all classical computation. Any function whose computation 
can be described as an algorithm can be computed by a Turing machine. More
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generally, a Turing machine can execute any algorithm. This is summarized in the 
Church–Turing thesis: 

A Turing machine can simulate any algorithmic process. 
Let’s return to our problem of determining whether a binary string is balanced 
or not. In the context of Turing machines, this problem is often referred to as a 
balanced parenthesis problem. We will use a Turing machine with the following 
description: 

Alphabet: : {0, 1, b, c , }
• binary 1 
• binary 0 
• blank b 
• “canceled” square c 
• leftmost square marker . 

Tape: Leftmost square is initialized as , followed by the string as consecutive 
zeros and ones. The remainder of the tape is blank. 

Finite state control: 
qstart : machine initial state 
qscan: scan right for 0 or 1 till blank is encountered 
qreturn: return to leftmost square 
qc0: scan right till a 1 is found to cancel a 0 
qc1: scan right till a 0 is found to cancel a 1 
qbal : accept state, string is balanced 
qunbal : reject state, string is unbalanced. 

Program: 

Program Line Description Task 

qstart , , qscan, , +1 Start – 

qscan, 0, qc0, c,+1 Found 0, 
enter cancel 
0  stat  e

Scan toward right till a 0 or 1 is encountered and enter 
corresponding cancel state. If end of string reached, 
accept as balanced 

qscan, 1, qc1, c,+1 Found 1, 
enter cancel 
1  stat  e

qscan, c, qscan, c,+1 Already 
canceled, 
continue 

qscan, b, qbal , b, 0 All bits 
matched, 
accept

(continued)
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(continued)

Program Line Description Task

qreturn, , qscan, ,+1 Reached 
first square, 
start 
scanning 

Return toward left till first square, then enter scan state 

qreturn, c, qreturn, c,−1 Continue 
toward left 

qreturn, 0, qreturn, 0,−1 Continue 
toward left 

qreturn, 1, qreturn, 1,−1 Continue 
toward left 

qc0, 1, qreturn, c, 0 Cancel 0 
with 1 

Move right till a 1 is encountered to cancel a 0. If end 
of string is reached and 1 is not found, reject as 
unbalanced 

qc0, c, qc0, c,+1 Already 
canceled, 
continue 

qc0, 0, qc0, 0,+1 0, continue 

qc0, b, qunbal , b, 0 Could not 
cancel 0 
with 1, 
reject 

qc1, 0, qreturn, c, 0 Cancel 1 
with 0 

Vice versa for above 

qc1, c, qc1, c,+1 Already 
canceled, 
continue 

qc1, 1, qc1, 1,+1 1, continue 

qc1, b, qunbal , b, 0 Could not 
cancel 1 
with 0, 
reject 

We now see that our automata can determine whether strings are balanced or 
not. However, is there a limit to what Turing machines can compute? As long as 
there is an algorithm with a finite number of steps, a Turing machine is capable of 
computing it. 

Several uncomputable problems have been discovered. The first and most 
famous counterexample of a problem which a Turing machine (or any known 
automaton) cannot solve is the halting problem, since an algorithm to solve it does 
not and cannot exist. In fact, Alan Turing devised the concept of Turing machines 
to answer a specific problem posed by David Hilbert, the Entscheidungsproblem 
or “decision” problem. Loosely defined, the decision problem questions: 

Does there exist a general algorithm that van take as input a (logical, 
mathematical, etc.) statement and “decide” whether it is valid or not?
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Fig. 3.4 A proof of the halting problem [4] 

Alan Turing, in his paper “On Computable Numbers, with an Application to 
the Entscheidungsproblem” [1], showed that a Turing machine can execute any 
arbitrary algorithm, but is incapable of solving the halting problem, answering 
the Entscheidungsproblem in the negative. The halting problem can be stated 
informally as 

Given a description of a Turing machine A, can Another turing machine B take 
as input the description of A and decide if it halts (does not loop forever)? 

There are various proofs in the negative: such a general algorithm cannot exist 
for an arbitrary input and input size. We provide here an exceedingly succinct 
proof in its original form [4] in Fig. 3.4. 

Turing machines (and its equivalents and variants) are the most powerful known 
computational devices and can execute any algorithm given enough time. 

Variants of Turing Machines 

For completeness, we will now briefly go over some variants of Turing machines, 
many of which are equivalent to the machine described above. 

Although Turing machines in their simplicity are quite powerful, writing pro-
grams for them can be quite laborious. To alleviate this arduousness, one may 
equip the Turing machines with multiple tapes. It is straightforward to show that a 
multi-tape Turing machine is at least as powerful as a single tape Turing machine 
(simply use only one tape). Furthermore, it can also be shown that a single tape 
Turing machine can efficiently (polynomially equivalent) “simulate” a multi-tape 
Turing machine as follows. 

Theorem ([5]) Given any k-string Turing machine M operating within time f (n), 
we can construct a Turing machine M operating within time O f (n)2 and such that, 
for any input x, M (x) = M ( x).
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Table 3.1 A summary of various automata 

Combinatorial logic Finite state 
automata 

Deterministic Turing 
machine 

Computation depends 
on 

Inputs Inputs and 
current state 

Inputs, current state, and 
current tape-square state 

Cannot compute Parity of arbitrary 
binary strings with 
unlimited input size 

Balance of an 
arbitrarily long 
bitstring 

Anything for which an 
algorithm does not exist 
(e.g., halting problem) 

Furthermore, to reconcile the differences between various flavors of Turing 
machines with varying alphabets, numbers and types of tapes, internal states, and 
programs, a Universal Turing Machine can be formulated. A Universal Turing 
Machine has the description of the Turing Machine it is simulating written on its 
tape, including its program, which is evocative of the operation of modern classi-
cal computers which have their programs (or even a virtual machine) written out 
in memory (although modern classical computers are better described by RAM 
machines, which we do not discuss in this book). 

We now summarize the various automata we have encountered and their salient 
features in Table 3.1. 

The Turing machines we have described and discussed above are determinis-
tic in nature, whose program lines implement a transition function of the form 
δ : (q, x) → (q, x, s). One may also study non-deterministic Turing machines, 
whose program is written as a set of outcomes δ : (q, x) → {(q, x, s)}. Note that 
a probability is not assigned to these outcomes; rather, the Turing machine can 
“explore” all branches of a computational tree at once. We emphasize that such a 
machine is not known to be constructible, rather it is a theoretical tool to study the 
complexity of computation. Non-deterministic Turing machines are not more pow-
erful than deterministic Turing machines. One may always describe a deterministic 
Turing machine that exhaustively explores all computational branches. The differ-
ence lies in efficiency, i.e., the resources and time needed to solve a problem. These 
concepts will be explored in Chap. 5: Information and Complexity Theory. Quan-
tum computers are not equivalent to non-deterministic Turing machines. There is 
no known physical instantiation of a non-deterministic Turing machine, and it is 
widely accepted to be impossible to create one. 

We note that if probabilities are assigned to the set of outcomes of a non-
deterministic Turing machine, and the resulting machine occupies a unique 
configuration at each step (rather than exploring every branch at once), it is a 
probabilistic Turing machine. Probabilistic Turing machines can be more efficient 
than deterministic Turing machines, but are less efficient than non-deterministic 
Turing machines. To set the stage for the later chapters, we will now briefly go 
over the idea of mapping the operation of a Turing machine to Boolean circuits.
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Universal Circuit Families 

While the theoretical construct of Turing machines is powerful and allows the 
study of problems in terms of their decidability and complexity, building Tur-
ing machines with infinite memory is impossible, and building Turing machines 
with finite memory is impractical, in contrast to Boolean circuits. However, at the 
beginning of this chapter, we concluded that 

(i) Boolean circuits can compute any function f : {0, 1}m → {0, 1}n
(ii) For the parity problem of size m̃, we cannot use a single Boolean circuit that 

computes parity : {0, 1}m → {0, 1}1 where m̃ > m. 

Naively seeking an equivalence between Turing machines and Boolean circuits 
quickly leads to contradictions. For example, since Boolean circuits can compute 
any f : {0, 1}m → {0, 1}n, a Boolean circuit does exist for each m which solves 
the halting problem for an input size m. But we know that the halting problem is 
undecidable. 

The other difference is that the same Turing machine (with its program lines, 
etc.) can be used to compute problems of arbitrary input size, e.g., the length 
of a string whose parity is to be determined. However, Boolean circuits do not 
satisfy this property for many problems. For this reason, Turing machines are a 
uniform model of computation, and Boolean circuits are a non-uniform model of 
computation. 

We will now reconcile the differences between Turing machines and Boolean 
circuits by considering a subset of all possible circuits: the uniform circuit family 
denoted by {Cm}. The uniform circuit family consists of circuits such that, given an 
input size m for a problem, a Turing machine can output a description of an equiv-
alent Boolean circuit that computes f : {0, 1}m → {0, 1}n. Turing machines and 
uniform circuit families compute the same class of functions, i.e., there must exist 
an algorithm to compute f . Note that since an algorithm for the halting problem 
is known not to exist, uniform circuit families exclude such circuits. 

With this restriction on {Cm}, we can safely say that while Boolean circuits may 
exist for various m which may decide the halting problem, we do not (cannot) have 
an algorithm to prepare them and therefore these circuits do not lie in {Cm}. 

As we will see in the next chapter, uniform circuit families are not exactly 
how modern classical computers are built and programmed. However, the quantum 
circuit computational model, introduced in Chap. 10: Quantum Measurements and 
Circuits, is by far the most convenient and popular method to program quantum 
computers. 

Finally, we note that modern classical computers, given infinite/sufficient mem-
ory and byte length, are computationally as powerful as Turing machines (they can 
readily simulate a Turing machine). However, classical computers also possess the 
capability to randomly access any data in memory, unlike Turing machines, which 
move one square at a time. Therefore, modern classical computers are closer to
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RAM machines from an architectural perspective, which are polynomially equiv-
alent to Turing machines. Even so, compute operations are executed in a CPU by 
combinational circuits (or a sequence of combinational circuits). 

In this chapter, we have explored the theoretical foundations of computing by 
examining various automata, their computational power, and the limits of com-
putability in the context of algorithms. In the next chapter, we will go over 
how classical computers are implemented as the practical counterpart to these 
theoretical foundations. 
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4An Overview of Practical Classical 
Computing 

We will now turn our attention to the practical implementations of computers. An 
elementary component of classical computing is logic gates connected by wires. 
Some logic gates that may be familiar to the reader are NOT, AND, and OR 
(Fig. 4.1, Tables 4.1 and 4.2). For completeness, we will also need to include the 
FANOUT and CROSSOVER operations, which split a single wire into multiple 
wires and allow wires to cross over each other, respectively, without affecting the 
information they carry [1]. What is particularly important about these gates is that, 
together with the FANOUT and CROSSOVER operations, they form a classical 
universal gate set (not the same as a universal circuit family). A classical universal 
gate set can represent any arbitrary Boolean operation on bits. We investigated 
combinatorial Boolean circuits as Combinatorial Logic automata in the previous 
chapter.

Another universal gate set consists solely of the NAND gate [2]. Therefore, 
any classical Boolean operation can be represented using NAND gates. Besides 
being optimally small (only 1 gate to form a universal gate set), it requires 
fewer transistors to implement and is therefore often preferred for manufacturing 
Very Large-Scale Integration (VLSI) circuits. This chapter is not geared toward 
designing our own state-of-the-art computer, so we shall not restrict the following 
discussion to the NAND gate. 

Transistors as Physical Logic Gates 

Transistors, vacuum tubes, and even fluid valves can be used to construct physical 
logic gates. As an example, Fig. 4.2 shows a layout of an AND gate constructed 
using two NPN (NPN indicates the doping type of the silicon) bipolar junction 
transistors and three electrical resistors.
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Fig. 4.1 Common Boolean 
logic gates and their symbols 

Table 4.1 Logical truth 
table for AND and OR 
Boolean gates 

OUT 

A B AND OR 

1 1 1 1 

0 1 0 1 

1 0 0 1 

0 0 0 0 

Table 4.2 Logical truth 
table for a Boolean NOT gate 

OUT 

A NOT 

0 1 

1 0

The voltage levels of the pins A, B, and OUT determine their logical state. The 
voltage levels assigned to Logical 1 and Logical 0 depend on the type of transistor 
technology underlying the gate. Some examples are given in Table 4.3. However, 
we can abstract away these details by simply considering logical states of 0 and 1.
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Fig. 4.2 Left: AND gate. Center: AND gate implemented using bipolar junction transistors of 
NPN type. Right: Schematic of a bipolar junction transistor of NPN type with labeled doped 
regions

Table 4.3 Logical voltage 
ranges for various types of 
transistors 

Transistor type 

Logical state TTL CMOS 

1 2.7–5.0 Volts 2.4–3.3 Volts 

0 0.0–0.4 Volts 0.0–0.5 Volts 

By combining several gates, one may implement circuits for Boolean operations 
of practical interest involving multiple bits. As an example, a circuit to add two 
bits is given in Fig. 4.3, followed by a circuit to add two unsigned integers in 
Fig. 4.4. 

Fig. 4.3 Left: Digital circuit of a full adder. Right: Schematic of a full adder. Both diagrams show 
the input bits A, B with an optional “Carry in” bit for addition, and the output bit S with a “Carry 
out” bit
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Fig. 4.4 Left: A circuit for adding two 4-bit unsigned integers with an overflow flag. Right: n-bit 
adder module with an overflow flag 

Combinational Circuits 

In the remainder of this chapter, we will keep considering this problem of adding 
integers and will ignore the issue of integer overflow for simplicity. 

One thing to note is that these circuits are acyclic and at a steady state, i.e., 
the output of any gate does not impact its input, and the electrical signal has 
propagated through all the transistors and stabilized. This property is important 
for the computation of Boolean functions using logic gates. 

This idea of forming acyclic circuits can be extended to form logical circuits 
for any arbitrary Boolean function, e.g., multiplication of two integers. However, 
continuing with this approach would require forming longer circuits for longer 
programs, and rewiring them for every program one would like to execute. The 
deeper the circuits are, the longer it takes for the signal to propagate through the 
entire sequence of gates, and the output is only valid when the circuit has reached 
a stable state; transient states are not valid in this framework! Furthermore, this 
approach does not allow reuse of circuits, e.g., if one would like to add N integers, 
it will require O(N ) adder circuits, as illustrated for the two approaches shown in 
Figs. 4.5 and 4.6.



Sequential Circuits 37

Fig. 4.5 Adding N integers using a serial addition approach with an overall circuit depth of O(N ) 

Fig. 4.6 Adding N integers using a parallel reduction approach with an overall circuit depth of 
O(log N ) 

Sequential Circuits 

The acyclic steady-state combinational circuit approach is not scalable and cer-
tainly not used in modern computers, which regularly crunch information on 
scales of Gigabytes to Exabytes. We will now bend the rules of acyclic steady-
state circuits for practical purposes. A more modular approach (which will allow 
reuse of circuits) can be pursued using some additional elements: logical memory 
and a clock signal. Using these, we will now lay the groundwork for sequential 
Boolean circuits. Modern computers are manifested as a mix of sequential and 
combinatorial Boolean circuits. 

The schematics for the components in what follows (e.g., memory cells) 
are presented in a way to enhance clarity and understanding. Modern hardware 
implements these components in a more robust and efficient manner.
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Before starting, we note that if logic gates are needed for purposes of effi-
ciency or performance, e.g., repeatedly performing the same Boolean operations 
for a stream of different inputs, one may implement a logic gate circuit of interest 
directly using either a Field-Programmable Gate Array (FPGA) or manufacture 
their own Application-Specific Integrated Circuit (ASIC). 

A clock signal is used to synchronize operations. A typical clock signal in 
modern processors typically has an oscillation period of ≈ 4 GHz and has an 
idealized waveform of the form shown in Fig. 4.7. 

Operations are typically “triggered” by the rising or falling edge of the clock 
signal. This is achieved using an “edge detector” circuit, which exploits the prop-
agation delay of electric signals through logic gates as shown in Fig. 4.8. These 
elements no longer obey the steady-state assumption for Boolean circuits. 

Fig. 4.7 Clock signal and associated terminology 

Fig. 4.8 Top: A simple edge detector circuit exploiting the delay in signal propagation through 
logical gates. Bottom: Input clock signal, complement of the delayed input clock signal, and the 
output signal spiking at the rising edge of the clock
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Memory Elements 

Memory elements can be constructed with the same ingredients: logic gates. A 
rudimentary implementation of a memory element is a “latch.” 

Let’s investigate a simple memory element for a single bit: a Data (D) Latch, as 
shown in Fig. 4.9 with its logic Table 9.1. One property immediately recognizable 
is that this logic circuit is cyclic, i.e., the output of a logic gate influences its 
input. The inputs to the latch are Data and Enable, and the output is Q and its 
complement Q’. When Enable (E) pin is set to logical 0, the latch does not change 
its output regardless of the Data pin. However, when Enable is set to 1, the output 
“latches” onto the Data input state and retains it when Enable is reset to 0, i.e., it 
has memory of its state when Enable was set to 1 (Table 4.4). 

We would like to be able to both read and write this single bit of memory when 
we address it. This can be achieved by adding a few more gates and a tri-state 
buffer to the mix. A tri-state buffer is not a logical gate, acting as an “electronic 
switch” instead, as illustrated in Fig. 4.10. It effectively disconnects (connects) the 
input and output pins when the enable pin is set to 0 (1) through a very high (low) 
resistance and can be implemented using bipolar junction transistors and resistors.

We can now form a memory cell as shown in Fig. 4.11. When Address is set 
to 1, the bit can be either written (Write/Read’ = 1) or read (Write/Read’ = 0) 
using the same Data pin. Otherwise, the memory cell simply stores the bit and is 
disconnected from the Data pin.

By putting together, say 8, such memory cells, one may form a single 8-bit (or 
1 byte) memory register which can be read and written one byte at a time through 
a data bus, as shown in Fig. 4.12.

Fig. 4.9 A circuit implementing a D-Latch 

Table 4.4 Logic table for a 
D-Latch 

E D Q Q’ 

0 * Latch Latch’ 

1 0 0 1 

1 1 1 0 
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Fig. 4.10 Top: Schematic of a tri-state buffer. Bottom: Operation modes of a tri-state buffer

Furthermore, one may put together a grid of m × m memory registers to form 
random-access memory (RAM, more specifically, Static RAM) capable of storing 
8 × m 2 bits of data using m2 memory addresses. Figure 4.13 shows how such a 
rudimentary RAM can be formed using encoders and decoders.

A decoder simply “decodes” an n-bit binary string into a 2n bit “one-hot” 
encoding (e.g., a binary number bn−1 .  .  . b1b0 is equivalent to the integer i = 
n−1 

j=0 
b j, and the corresponding one-hot encoding will be a binary string of length 

2n full of zeros except the i + 1 th position, i.e., b0 ×101 = 5 → 00100000). An 
example for two encoded bits being decoded is shown in Table 4.5.

This object can be abstracted into a RAM object with an address bus, a memory 
bus, and a pin for Write/Read’, all synchronized by a clock. This RAM can be read 
one byte (8 bits) at a time by addressing a particular register. 

We can organize memory into chunks to store program instructions, data, a 
stack, a heap, and any other information or intermediate storage needed by the 
program, with all memory being accessible through a memory bus consisting of 
an address, data, and control bus as illustrated in Fig. 4.14.

This approach of using a single memory to store both the program and data 
is known as Von Neumann architecture (in contrast with the Harvard architecture, 
which stores the program in a separate memory).
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Fig. 4.12 A classical memory register with a data bus

CPU Architecture 

We now turn our attention to a CPU. In its simplest form, a CPU is connected 
to memory and receives a clock signal. A basic CPU has a very limited number 
of internal registers to keep track of the CPU state and will frequently need to 
offload information to memory as it steps through a program. The program (or 
sequence of instructions) itself will be stored in memory. The CPU will “fetch” 
these instructions one at a time to “decode” and “execute” them (Figs. 4.15 and 
4.16).

A CPU operates in a Fetch–Decode–Execute cycle: 

• Fetch: Get the next instruction from memory (using the memory address of the 
next instruction in the program counter register). 

• Decode: Write instruction to Current Instruction register to activate the appro-
priate circuits for the instruction (e.g., an adder circuit with inputs connected 
to read two general-purpose registers and output connected to write to another 
register) 

• Execute: Execute instruction (can include read/write operations from/to mem-
ory). 

Some important components of a CPU are as follows: 
Registers:
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Table 4.5 Equivalent 
encoded and decoded 
bitstrings 

Encoded Decoded 

00 0001 

01 0010 

10 0100 

11 1000

Fig. 4.14 RAM connected 
to a Memory Bus

• Current Instruction register: The instruction the CPU is handling in the current 
Fetch–Decode–Execute cycle. 

• Program Counter register: Memory address of the next instruction. 
• General-Purpose registers: Typically used to hold information needed for the 

current instruction, or results of the previous instruction. There are often only 
8 of these, and information is immediately offloaded to either the stack or heap 
to make them available for the next instructions. 

• Stack Pointer register: Memory address of the top of the stack. 
• Flag register: Keep track of any flags, like integer overflow. 

Units:



CPU Architecture 45

Fig. 4.15 Layout of a simple modern computer 

Fig. 4.16 
Fetch–Decode–Execute cycle
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• Control Unit: Responsible for coordinating the Fetch–Decode–Execute cycle. 
Fetches instructions from memory, decodes them by activating the appropriate 
circuits, and executes the instructions (using however many clock cycles are 
needed for each step). 

• Arithmetic Logic Unit (ALU): Circuits for binary operations (AND, OR, Bit-
shift, etc.), basic arithmetic (ADD, Subtract, Multiply, Divide), etc. The ALU 
is coordinated by the Control Unit. 

• Floating-Point Unit (FPU): Circuits for floating-point operations. It typically 
requires several clock cycles to complete. The FPU is also coordinated by the 
Control Unit. 

A CPU typically has a very limited number of registers (typically 8 general-
purpose registers for arithmetic, and the rest reserved for the program counter, 
link register, error flags, stack pointers, etc.). CPUs rely heavily on RAM to hold 
any data beyond the immediate operations being performed in the CPU. One may 
draw fuzzy parallels between the state of CPU registers with Turing machine finite 
state control, RAM as the tape, and the program counter as the position of the 
read–write head. 

The rising or falling edges of a clock trigger changes in the register states of a 
CPU. In practice, one instruction may take several clock cycles to execute (RISC 
instructions require fewer cycles but have longer code; CISC instructions require 
more cycles to execute but have shorter code), and the fetch–decode–execute cycle 
is pipelined (i.e., they may be occurring simultaneously on every clock cycle!). All 
these operations are coordinated by the control unit in the CPU. 

For brevity, we will have to gloss over additional details of how these individual 
units are implemented and connected, as it is complex and lengthy. By now, we 
hope that the reader is convinced that all these pieces can be implemented using 
logic gates, latches, and edge detectors, and the control unit coordinates these 
operations with the ticking of a clock signal. 

Computer Programming 

With a functioning CPU that can execute a sequence of operations (stored in RAM) 
that may require access to some data (also stored in RAM), one may simply write 
a sequence of instructions for the CPU to read information from memory, pro-
cess it, and store the results in memory. We are now in the territory of computer 
programming. 

With these basic ingredients, we can turn back to the problem of adding a vector 
of N integers using only one addition circuit. We use the following pseudocode to 
instruct a CPU to add numbers. 

Setup: 

CPU Register R3: Memory Address: First integer in vector 

CPU Register R4: Memory Address: N (# of elements in vector)
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Program Counter: Memory Address: Instruction 1 of Addition Program 

Addition Program: 

Instruction # Instruction 

Instruction 1 Load N into CPU Register R0 (using Memory Address in 

R4) 

Instruction 2 Write integer 0 into CPU Register R2 

Instruction 3 Load number in memory address given by R3 into R1 

Instruction 4 Add R2+R1, put result in R2 

Instruction 5 Decrement R0 = R0-1 
Instruction 6 Increment R3 = R3+1 
Instruction 7 Compare R0 with 0 

Instruction 8 If greater than, write address of Instruction 3 

in Program Counter Register

Using such a program, we can add N unsigned integers with a single addition 
circuit and a few lines of instructions that loop over the integers, as opposed to at 
least N − 1 addition circuits for a Boolean logic circuit. Note that using this same 
strategy, we can perform arbitrary Boolean operations by providing a sequence of 
instructions instead of explicitly constructing equivalent circuits. 

Of course, in today’s world, we typically instruct computers using programming 
languages that are easier to read by humans. These languages are “compiled” 
into machine code using compilers like gcc or “interpreted” using interpreters like 
Python or MATLAB. 

To demonstrate the increasing level of abstraction between various program-
ming language levels, we provide below three minimal examples of code imple-
menting an even simpler task: adding two unsigned integers stored in memory and 
storing the result in memory: 

• In a high-level language like Python, one may do this by writing a one-line 
function: 

# Add two integers in Python 

def ADDNUMS(num1, num2): 

return num1 + num2 
… # Create two integers num1 and num2 

sum = ADDNUMS(num1, num2)
…

• For a low-level language, some additional steps like declaring variables and 
data types are needed:
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// Add two integers in C 

#include <stdio.h> 

unsigned int ADDNUMS(int num1, int num2) { 

return num1 + num2; 
} 

unsigned int main() { 

unsigned int num1, num2, sum; 

… // Populate num1 and num2 

sum = ADDNUMS(num1, num2); 

… 

return 0;

}

• In assembly language, one must explicitly coordinate the flow of information 
in the CPU registers and memory and the program counter: 

;Add two numbers in ARM Thumb2 Assembly language 

;************************************************************ 

;Main Program 

;************************************************************ 

;LABEL DIRECTIVE VALUE COMMENT 

AREA main, READONLY, CODE 

THUMB 

EXTERN ADDNUMS 

EXPORT __main 

__main … … ;Start of Main program 

…  …  …  

… … ;Put memory addresses in CPU registers R0: sum (not 

yet computed), R1: num1, R2: num2 

BL ADDNUMS ;Go to instruct. number with label ADDNUMS, store 

addr. of next __main instruct. in Link Register LR 

… … ;Resume Main (LR points to this instruct.). Addresses 

of numbers are in R0,R1,R2. 

…  …  …  

…  …  …  

;************************************************************* 

; End of Main Program 

;************************************************************* 

ALIGN 

END 

;ADDNUMS code: When this code is launched, the main program is 

expected to have prepared: 

; 1) the memory address of num1 and num2 in CPU registers R1 and R2
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; 2) the memory address of where to store sum in register R0 

; 3) the memory address of the next instruction to execute after 

ending program in LR (Link Register) 

;This program will 

; 1) Push the program state to the stack (R1, R2) 

; 2) Load the two numbers into R1 and R2 using their addresses (over-

write addresses of num1, num2 with num1, num2) 

; 3) Add the two numbers and store sum in register R1 

; 4) Store sum (sum is in R1) in the memory address of sum (address is 

in R0) 

; 5) Pop R1 and R2 from stack into R1 and R2 to restore registers to 

original state 

; 6) Link program back to next instruction in __main 

;************************************************************* 

; ADDNUMS program 

;************************************************************* 

;LABEL DIRECTIVE VALUE COMMENT 

AREA main, READONLY, CODE 

THUMB 

EXPORT ADDNUMS 

ADDNUMS PUSH R2 ;Push data in registers R0,R1,R2 to the 

computational stack in memory 

PUSH R1 

LDR R1,[R1] ;Load 32-bit integer in memory address 

given by R1 into R1 

LDR R2,[R2] ;Load 32-bit integer in memory address 

given by R2 into R2 

EXAMPLE ADD R1,R1,R2 ;Add and store in R1: R1 = R1 + R2 
STR R1,[R0] ;In memory address given by R0, store 

32-bit integer stored in R1 

POP R1 ;Restore remaining registers to original 

state 

POP R2 

BX LR ;End of ADDNUMS, resume __main using link 

register 

;************************************************************* 

; End of ADDNUMS program 

;************************************************************* 

ALIGN

END

A compiler will convert human-readable code into machine code, i.e., replace CPU 
instructions with the corresponding binary number for that instruction and link 
every LABEL in assembly code with the corresponding memory address where that
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Fig. 4.17 ADD instruction opcode encoding, ARM Thumb-2 Supplement Reference Manual 

instruction is stored. As an example, according to the ARM Architecture Reference 
Manual Thumb-2 Supplement, the instruction. 

ADD R1,R1,R2 

labeled as EXAMPLE in the assembly example above will be converted to a 16-bit 
machine opcode: 

0001100010001001 

by a compiler according to the datasheet excerpt shown in Fig. 4.17. This string of 
zeros and ones will activate the appropriate registers and ALU circuits in the CPU 
and activate the electrical connect between the registers and the ALU. The avail-
able set of instructions, registers, and their corresponding opcodes are provided by 
the manufacturer of any processor in developer manuals. 

One rarely writes code in assembly or machine opcodes due to its tremendous 
difficulty, relying on compilers to deal with at least low-level code, and, more often 
these days, high-level code. However, knowledge of the inner workings of digital 
computers allows one to better appreciate their power, limitations, and potential. 

Progress in Classical Computing 

This discussion barely scratches the surface of modern-day CPUs, which require 
several other layers of abstraction, e.g., CPU cache. The aim of this discussion 
is to provide the reader with an abstract understanding of how classical com-
puting is done electronically using the binary number system from the program 
level down to electronic circuits executing instructions at the transistor level. 
Modern-day computing is highly complex, utilizing several advanced features like 
multiple levels of cache, operating systems, dynamic memory allocation, multi-
threading, pipelining, multiple cores, speculative execution, RAM, disk storage,
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GPU accelerators, FPGAs, network connections, and many other capabilities. 
However, at its heart lie basic components like logic gates, clock signals, and 
memory cells. Although modern electronic computational devices differ from true 
Turing machines, one may prove that a digital electronic computer with (hypo-
thetical) infinite memory is equivalent to a Turing machine. It is fortunate that for 
many problems of practical interest finite memory is sufficient. 

For readers interested in learning more about practical modern computing, one 
may start with studying digital design [2] and then proceeding to read about 
computer architectures [3]. 

We end our discussion with how progress in computing has scaled over the 
past decades, and how it is expected to proceed in the future: Moore’s law, and 
the GPU version of Moore’s law. 

Over the years the transistor count in CPUs has roughly doubled every two 
years, and this principle is referred to as Moore’s Law [4] as illustrated in Fig. 4.18. 
This doubling of transistors has roughly translated to a doubling of the compu-
tational capabilities of processors. This is attributed to steady advancements in 
transistor and manufacturing technologies, enabling smaller “feature sizes” of inte-
grated circuits. However, this approach of miniaturization is approaching its limits; 
feature sizes smaller than 1 nm are prone to quantum effects, making the devices 
lose their deterministic behavior (at the time of writing this book, 2nm features 
enabled by extreme ultraviolet lithography are state-of-the-art [5]). 

Fig. 4.18 Gordon Moore’s prediction in his original publication [4]
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Beyond the issues of feature sizes, the operable clock frequencies of CPUs 
have stopped increasing due to heat dissipation issues, which can lead to a com-
pute bound situation. Moreover, programs are often memory bound, i.e., the limited 
bandwidth between the CPU and memory inhibits speedups since the CPU idles 
while data is being read from (much slower) memory. In the realms of distributed 
memory, heterogeneous computing, and parallel processing data may need to be 
moved between memories or messages/signals may need to be sent between com-
puting units. It is not rare for such computing systems to become communication 
bound. 

Several of these concerns have been alleviated by parallel computing enabled 
by modern GPUs. Parallel programming enables speedups by performing many 
operations in parallel, enabling speedups for many practical problems. Revisiting 
our problem of adding N integers, a CPU will require O(N ) CPU clock cycles, 
while a GPU with N − 1 processors can perform the same task in O(log N ) GPU 
cycles using parallel reduction in software. The explosive growth of GPU com-
puting has posited Huang’s law [6]: the number of transistors in GPU devices 
more than doubles every year. A single modern GPU may have thousands of com-
putational cores; multiple GPUs can process information on a single computer; 
multiple computers can be connected to form clusters or supercomputers. 

However, many computational tasks in scientific computing cannot benefit from 
parallelization. A very basic example, Newton iterations to compute the roots of a 
function f : R → R: 

xn+1 = xn + 
f (x n)

f (xn) 

require sequential computation of the iterates and will be limited by clock speeds. 
Even for problems that are not completely sequential, parallelization is far 

from a panacea. Problems which are embarrassingly parallel, i.e., require no com-
munication between processes, are well-suited for parallelization over multiple 
processors. For all other problems, the speedup possible from parallelization will 
be limited by the communication overhead between processors, which may be on 
the same CPU or GPU, or may span multiple CPUs, GPUs, computer nodes, or 
even be distributed across the Internet. 

Beyond the ability to compute fast, one may also be restricted by the amount 
of available memory and energy consumption. Simulating quantum mechanics is 
exponentially expensive in general and is simply intractable on classical comput-
ers. The quantum equivalent of Moore’s law has not been established yet, albeit 
some suggestions have been floated, e.g., quantum volume [7–9]. 
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5Information and Complexity Theory 

In the previous two chapters, we have learned about the theoretical foundations 
of computing and how practical classical computing machines operate. Using the 
concept of a deterministic Turing machine, we have explored the idea of what 
is computable and have concluded that any problem with a solution described 
as an algorithm is theoretically solvable, and that deterministic Turing machines 
can execute any algorithm. We noted that Turing machines with multiple tapes 
and non-deterministic Turing machines can theoretically solve the same problems, 
albeit in a more efficient manner. We then provided an overview of how classical 
computers operate, recognizing that memory is finite and limited, and that the num-
ber of computational steps that can be performed within a finite time is bounded 
by practical constraints, such as clock speeds, parallelizability, communication 
overheads, and memory access speeds. 

We now turn our attention to study the tractability of problems under the lens 
of their complexity, i.e., the time and resources needed to execute algorithms, 
and classify them. This enables us to allocate time and computational resources 
to tractable problems and direct computational resources toward alternatives for 
intractable problems, seeking approximate solutions. 

Classical Decision Problems and Complexity Classes 

We touch upon the idea of a decision problem in this chapter, i.e., using designated 
accept or reject states, a deterministic (or a non-deterministic) Turing machine 
can decide a problem as accept/yes/affirmative or reject/no/negative. Problems 
are solved using an algorithm, which can be efficient (polynomial resources) or 
inefficient (superpolynomial resources).
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The time (number of steps) and space (memory) required to decide problems is 
one important factor in classifying them. Another important factor is the notion of 
verifiers and certificates. To understand the relations between various problems, we 
will also introduce the concept of reducing a problem to another. In this chapter, 
we will use the traveling salesman problem to indicate the differences between 
problems and their complexities. 

Let’s first consider the problem of finding the maximum number in a set. The 
optimization version of this problem can be stated as 

Given a set of integer numbers A ⊂ Z, find y ∈ A s.t. y ≥ z ∀ z ∈ A. 
We can state the decision version of this problem as follows: 
Given a set of integer numbers A ⊂ Z and z ∈ Z, does there exist a y ∈ A s.t. 

y ≥ z? 
It is straightforward to see that finding the maximum (optimization version) in 

a set of numbers will take O(n) steps. For the decision version, we may simply 
scan through the set to seek y ≥ z, requiring O(n) steps at most. For the decision 
version of the problem, the accept case will be accompanied by a certificate, which 
can be some y satisfying y ≥ z. The verifier is an algorithm that will verify this 
certificate. For both versions of this problem, the verifier can go through the set 
to find either the maximum or find y ≥ z, which is pretty much the decision 
algorithm itself! Both the algorithm to decide the decision problem and verify 
the certificate require a polynomial (of degree 1) number of steps. Therefore, the 
decision problem is decidable and verifiable in polynomial time and belongs to the 
complexity class P. We can also solve the optimization version of this problem in 
polynomial time, but the class P is only defined for decision problems. 

Note that if A is a tuple of integers, the certificate could instead be the index 
of y in the tuple A. In this setting the verification can be done in constant O(1) 
time for the decision version of the problem, while the optimization problem still 
requires O(n) time. 

Now let’s investigate traveling salesman problems. 
One version of this problem is a decision problem: 
Given a list of N cities and the distances between them, does there exist a path 

such that each city is visited exactly once with the same starting and final city, and 
the total distance is at most k? 

A deterministic or non-deterministic Turing machine can decide this problem 
by answering in the affirmative or negative. The best-known algorithms to decide 
this problem with a deterministic Turing machine require exponential time in the 
worst case. However, a non-deterministic Turing machine can decide this problem 
in polynomial time. 

In either case, we will also be provided a certificate for the affirmative case 
in the form of the path that is shorter than k. Using a verifier, we can use the 
certificate to confirm that the solution is indeed affirmative. The length of the 
path (a sum of N distances) can be verified in O(N ), polynomial time, using a 
deterministic Turing machine. 

Since the certificate is verifiable in polynomial time by a deterministic Tur-
ing machine, this decision problem belongs to the non-deterministic polynomial
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time class NP. By this definition, the class of problems P also lies in NP. An 
alternative and equivalent definition for NP is the class of problems decidable by 
non-deterministic Turing machines in polynomial time. It is widely accepted, but 
not proven that P ⊂ NP and P = NP. 

Now we turn our attention to a special subset of problems in NP: NP-Complete 
problems. Every problem in NP can be reduced to a problem in the class of NP-
Complete problems, where the reduction is efficient, requiring at most polynomial 
time. By reducing any problem in NP to any NP-complete problem, one may solve 
the equivalent NP-complete problem to implicitly solve the NP problem. These 
decision problems are therefore the “hardest” problems in the class NP; solving 
these efficiently (in polynomial time using a Turing machine) solves all problems 
in NP efficiently. 

Another version of the traveling salesman problem is an optimization problem: 
Given a list of N cities and the distances between them, what is the shortest path 

such that each city is visited exactly once, with the same starting and final city? 
This is not a decision problem; it simply asks for an optimal solution. Even if 

any Turing machine provides an optimal solution, we do not have any method to 
verify that it is the optimum solution other than seeking the optimal solution itself, 
which requires exponential time. 

We will now finally introduce the NP-hard class of problems. The class NP-
hard is not restricted to decision problems. These problems are at least as hard as 
NP-complete problems (the hardest problems in NP). 

The conjectured relation among the decision problems NP and the general class 
of problems NP-hard is shown in Fig.5.1. 

Until now, we have mostly considered problems that are decidable by non-
deterministic Turing machines within polynomial time, and by deterministic 
Turing machines within exponential time. The space required for these problems 
is polynomial since a deterministic Turing machine can simply try out every pos-
sible solution one by one exhaustively, i.e., they belong to the class PSPACE. 
A broader class of problems is problems that require exponential time, even for

Fig. 5.1 Conjectured 
relation among P, NP, 
NP-complete, and NP-hard 
classes of problems 
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Fig. 5.2 Conjectured 
relation among broader 
classes of decision problems 

a non-deterministic Turing machine, and problems that require an exponential 
amount of memory, which are the classes EXPTIME and EXPSPACE, respec-
tively. These decision problems are nested as P ⊆ NP ⊆ PSPACE ⊆ EXPTIME 
⊆ EXPSPACE, as visualized in Fig. 5.2. 

Probabilistic and Quantum Complexity Classes 

We will now define a few more complexity classes and will establish the 
conjectured relation between the power of classical computers and quantum 
computers. 

Bounded-Error Probabilistic Polynomial (BPP): Problems that can be 
decided by a probabilistic Turing machine in polynomial time with a probabil-
ity of correctly accepting a problem ≥ 2 3 and a probability of incorrectly accepting 
a problem ≤ 1 3 for all instances. 

Probabilistic Polynomial (PP): Problems that can be decided by a probabilistic 
Turing machine in polynomial time with a probability of correctly accepting a 
problem > 1 2 and a probability of incorrectly accepting a problem ≤ 1 

2 for all 
instances. 

The difference between PP and BPP lies in the fact that for BPP, the algorithm 
can simply be repeated a few times to (exponentially) increase the probability of 
correctly deciding the input. For PP, this guarantee is lost. Naturally, BPP ⊆ PP. 

Quantum computers are probabilistic devices. We have not yet introduced quan-
tum computing, but at this point it is sufficient to know that a quantum computer 
executes a quantum circuit prepared by a classical computer. The size of this quan-
tum circuit determines the time required for its execution. Quantum circuits, which 
are considered feasible, are polynomial in size. A quantum computer can prob-
abilistically decide on an input. We define the class of problems BQP now as 
follows.
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Bounded-Error Quantum Polynomial (BQP): Problems that can be decided 
by a quantum computer in polynomial time with a probability of correctly accept-
ing a problem ≥ 2 3 and a probability of incorrectly accepting a problem ≤ 1 3 for 
all instances. 

The circuit that the quantum computer runs must be generable (and executable) 
within polynomial time. 

We will now summarize our entire discussion. For classical computing, problem 
complexities are nested as. 

P ⊆ NP ⊆ PP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE 
For classical probabilistic and quantum computing problems, complexities are 

nested as 
P ⊆ BPP ⊆ BQP ⊆ PP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE 
which is summarized in Fig. 5.3. 
From these classes, we can get a better understanding of quantum computers 

and their power and efficiency. Since BQP ⊆ EXPTIME, quantum computers are 
at most exponentially more efficient than classical computers, and since BPP ⊆ 
BQP computers are at least as powerful as classical computers. What is surprising

Fig. 5.3 Conjectured nesting 
relation among NP, BPP, 
BQP, and PP. The arrows 
indicate subsets, i.e., BQP ⊂ 
PP 



60 5 Information and Complexity Theory

is that for decision problems, BQP ⊆ PSPACE, i.e., a classical computer can, 
given enough time, decide any problem decidable by a quantum computer using 
polynomial space. For more detailed analyses with more classes, e.g., MA and 
QMA, we refer the readers to [1, 2]. 

Information is Physical 

The concepts of information and computing are implicitly connected to physics. 
We start our discussion with a thought experiment leading to a paradox: Maxwell’s 
Demon [3]. 

Consider a box with particles bouncing around, similar to a gaseous phase of 
matter. The box is divided into two chambers FAST and SLOW, with a door 
operated by a “demon.” The demon keeps track of all the particles by measur-
ing their velocities, and opens and shuts a hypothetical door in such a manner 
that fast-moving particles are allowed to move from chamber SLOW to FAST, and 
slow-moving particles are allowed to move from chamber FAST to SLOW. The 
door remains shut otherwise. 

By doing this long enough, most, or all, of the particles will eventually be sep-
arated into FAST and SLOW, i.e., hot and cold gases, respectively, and the entropy 
of the system will have decreased as illustrated in Fig. 5.4. Considering that the 
door is small enough and the energy expended in tracking the particles and oper-
ating the door is negligible, one may then (fallaciously) consider operating a heat 
pump to obtain “free” energy in violation of the second law of thermodynamics. 

Fig. 5.4 Maxwell’s “demon” separating slow (blue) and fast (red) particles into FAST and SLOW 
chambers
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We know that violating the second law of thermodynamics is impossible: the 
total entropy of a closed system cannot decrease. Although there are many trou-
blesome idealizations in this thought experiment, one scenario is that even if the 
demon can measure the velocities of the particles and operate an ideal door, the 
velocity information will have to be tracked and stored. Eventually, old information 
will have to be deleted (either during one separation cycle or any subsequent sep-
aration cycles). This act of erasing previously known information can be directly 
considered an increase in entropy. Any decrease in entropy as a result of separating 
the particles will be offset by the erasure of information. 

Landauer’s principle formalizes this concept. For interested readers, we note 
that this is a nuanced topic and refer them to [4] for an excellent exposition on 
this subject. With a preamble, we have set the stage for the remainder of this book. 
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Part II 

A Brief Introduction to Quantum Mechanics 

This part provides a concise introduction to the essential concepts and experi-
ments underlying quantum mechanics, presented specifically for computational 
engineers and applied scientists. It is not meant to serve as a comprehensive 
quantum mechanics course, but rather as a focused overview that highlights key 
physical phenomena and foundational principles relevant to quantum computing. 

We emphasize physical intuition and conceptual clarity over exhaustive theo-
retical treatments. Readers seeking deeper exploration or rigorous derivations are 
encouraged to consult standard quantum mechanics textbooks. The topics intro-
duced here set the stage for understanding quantum computing concepts presented 
in subsequent parts. 

Chapter 6, “A Gentle Introduction to Quantum Mechanics”, introduces the 
structure of quantum theory through foundational concepts, including quantum 
states, superposition, measurement, and probability amplitudes. Emphasis is placed 
on developing intuition for how quantum systems behave differently from classical 
systems, with a minimal use of mathematical formalism. 

Chapter 7, “The Stern–Gerlach Experiment”, presents the Stern–Gerlach exper-
iment as a concrete illustration of measurement, state collapse, and spin quan-
tization. The chapter illustrates how discrete measurement outcomes emerge in 
quantum systems and how they are related to the mathematical structure of 
quantum states. 

Chapter 8, “Photon Polarization”, uses polarization states of photons to rein-
force and generalize earlier concepts. The chapter explores basis changes and 
probabilistic outcomes in the context of light, providing an accessible experimental 
analogy for qubit operations.

https://doi.org/10.1007/978-3-032-03325-3_6
https://doi.org/10.1007/978-3-032-03325-3_7
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6A Gentle Introduction to Quantum 
Mechanics 

The theories of physics that were discovered and studied up to the end of the 
nineteenth century are what we now call classical physics. These include and are 
not limited to Newton’s laws, continuum mechanics, and Maxwell’s equations for 
electromagnetism. These frameworks describe a wide range of macroscopic phe-
nomena with remarkable accuracy. However, as experimental techniques advanced, 
discrepancies began to emerge between classical predictions and empirical obser-
vations, particularly at atomic and subatomic scales. These failures ushered in the 
era of modern physics, characterized by two revolutionary frameworks: relativity 
and quantum mechanics. 

One of the crises that was resolved by quantum mechanics is the “ultraviolet 
catastrophe.” According to the classical Rayleigh–Jeans law describing the fre-
quency spectrum of a black body at a given temperature, a black body would emit 
unbounded energy in the ultraviolet spectrum and higher frequencies: 

Bν (T ) = 
2ν2 kBT 

c2 

where Bν (T ) is the intensity of the frequency ν for a blackbody at equilibrium tem-
perature T and kB, c are the Boltzmann constant and the speed of light respectively. 
As ν →  ∞, Bν →  ∞, which is unphysical and disagrees with experiments. 

This paradox was resolved by Max Planck, who proposed that electromag-
netic energy is emitted in discrete packets, or quanta [1]. These ideas were later 
extended by Albert Einstein to explain the photoelectric effect and by Niels Bohr 
to develop models for the atom. These developments culminated in the formula-
tion of quantum mechanics, a new theoretical framework capable of accurately 
describing atomic and subatomic phenomena.
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Quantum mechanics is governed by a set of mathematical postulates, analogous 
to the foundational laws of classical mechanics. These postulates define how quan-
tum systems are represented, how observables are associated with operators, and 
how measurements and time evolution are described. 

Postulate 1—Wavefunctions: 
The state of a quantum mechanical system is completely specified by a wavefunc-

tion | in a complex Hilbert space such that | = 1. 

Postulate 2—Observables: 
For every observable property of a quantum mechanical system described by 

| , there exists a linear Hermitian operator A. The operator encodes all possible 
measurement outcomes for that observable. 

Postulate 3—Measurements: 
The outcomes of any measurement of an observable A will be limited to the 

eigenvalues λa of A. 

Postulate 4—Expectation Values: 
The expected value of an observable A for a system in state | is given by 
|A| . 
The probability of obtaining an outcome λa with a corresponding eigenvector |a 

is 

p(a) = ψ |(|a a|)| ψ 

Postulate 5—Time Evolution: 
The wavefunction of a quantum system evolves in time according to the time-

dependent Schrodinger equation: 

ih 
d 

dt
| (t) = H | ( t) 

where h is Planck’s constant and H is the Hamiltonian for the system. 

Postulate 6—Wavefunction Collapse: 
Upon measuring an observable A and obtaining an eigenvalue λa, the system’s 

state collapses to the corresponding eigenvector |a . 
Although quantum mechanics has profound physical implications, its mathe-

matical formalism is relatively straightforward, relying primarily on linear algebra 
and probability theory. The key challenge is not mastering the mathematics but 
developing intuition for how quantum systems behave—how they evolve, interfere, 
and respond to measurement. 

To build that intuition, the next two chapters present two simple but foun-
dational experiments—the Stern–Gerlach experiment and photon polarization— 
framed for accessibility and insight rather than rigor. Readers are encouraged to 
read this part with a focus on conceptual understanding, not on fully internalizing
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every equation. For a deeper and more formal treatment, standard textbooks in 
quantum mechanics are recommended [2]. 
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7The Stern–Gerlach Experiment 

The Stern–Gerlach experiment [1] and its modifications help describe some basic 
concepts of quantum mechanics. We start our discussion by introducing a single 
Stern–Gerlach device. 

Beam Source 

The input to a Stern–Gerlach device is a beam of silver atoms. This is achieved 
by evaporating silver using an electric furnace in a vacuum and allowing the gas 
to escape through a small aperture, as shown in Fig. 7.1.

The reason for using silver is that it has one unpaired valence electron. We 
are looking at this experiment in retrospect through the lens of modern quan-
tum theory; the original Stern–Gerlach experiment was designed to prove the “old 
quantum theory” [2] which has not withstood experimental scrutiny. 

Electron Spin 

Electrons carry an intrinsic property of “spin.” The term spin is a misnomer; it 
is quite unlike the classical spin of objects with mass [3]. The reason this intrin-
sic property is called spin is that it exhibits behavior similar to an object having 
angular momentum. 

Depending on the direction of their spin, electrons will deflect in a magnetic 
field. All the electrons in silver atoms, except the unpaired 5s1 electron, are paired 
as shown in Fig. 7.2 according to the aufbau rule. Paired electrons cancel out the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
O. M. Raisuddin and S. De, Quantum Computing for Engineers, 
https://doi.org/10.1007/978-3-032-03325-3_7 

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_7&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_7


70 7 The Stern–Gerlach Experiment

Fig. 7.1 Beam source for a Stern–Gerlach Experiment. A furnace heats silver particles, which are 
emitted through a small aperture as a beam of particles

Fig. 7.2 Pairing of electrons in silver atoms in shells according to the aufbau principle 

net effect of particles with opposite spins in a magnetic field. The unpaired elec-
tron, however, should cause a silver atom to deflect in the presence of a magnetic 
field depending on which direction the spin is aligned. 

Stern–Gerlach Device and Detector 

Inside the Stern–Gerlach device is a magnetic field created using magnetic poles 
with a special shape: one pointed pole and one flat pole as shown in Fig. 7.3. 
The magnetic field created by this arrangement is inhomogeneous, or spatially 
varying, in the x − z plane. This inhomogeneous field should deflect the silver 
atoms according to the angle formed between the magnetic field lines and the 
magnetic dipole of the unpaired electron. In this case, it deflects the electrons 
toward either magnet according to the alignment of the electron’s spin.
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Fig. 7.3 Left: Silver beam passing through a Stern–Gerlach device. Right: Schematic of the inho-
mogeneous magnetic field inside a Stern–Gerlach device 

After passing through the magnetic field, the silver atoms collide with a “de-
tector,” which in the original experiment was simply a metallic plate on which the 
silver atoms were deposited and could be observed at the end of the experiment. 

Stern–Gerlach Experiments 

Experiment 1 

Since the particles coming from the furnace are not arranged in any specific order 
or aligned in any direction, one may expect that the orientation of the spin for 
the unpaired electron should be random. Based on this intuition, a continuum of 
deflections for the particles is to be expected. The surprising result is that the beam 
of silver atoms is split into two, as shown in Fig. 7.4. This experiment hints that the 
spin property of electrons is quantized. However, this phenomenon of quantization 
alone does not entirely capture the counterintuitive nature of quantum mechanics.

We now label this arrangement of magnets with the magnetic field lines parallel 
to the Z-axis, a Stern–Gerlach-Z (SGz) device. By rotating the device 90◦ around 
the Y -axis, we can create a Stern–Gerlach-X (SGx) device. This experiment is 
restated in a schematic form in Fig. 7.5 where F denotes the intensity of the beam 
entering the device. The intensity of the beam split in two is denoted by F/2 as it 
is halved.

We use this schematic to describe further experiments that demonstrate the 
counterintuitive nature of quantum mechanics.
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Fig. 7.4 The Stern–Gerlach device splits a beam into two distinct beams

Fig. 7.5 Schematic of a Stern–Gerlach device splitting a beam

Experiment 2 

In our second experiment, shown schematically in Fig. 7.6, we feed the beam 
deflected in the +Z direction by an SGz device into another SGz device. Since 
the particles exiting each of the beams of the SGz device are aligned in the +Z 
direction, we expect the second SGz device to once again deflect those particles 
in the +Z. Indeed, this is what is observed experimentally. 

Fig. 7.6 Two Stern–Gerlach devices aligned with the same (Z) axis
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Fig. 7.7 Two Stern–Gerlach devices are aligned with mutually orthogonal axes 

Experiment 3 

We now replace the second SGz device with an SGx device, as shown in Fig. 7.7. 
The SGx device is identical to an SGz device, except that it is rotated 90

◦ 
in the 

x–z plane. It is observed that the SGx device further splits the beam into two, 
based on the X component of spin. 

This is not too surprising, as one may make an analogy to a spinning top form-
ing an angle of 45◦ with the Z and X axes; the beam deflected in the +X direction 
by the SGx device had a quantized spin component of both +Z and +X. 

To model each silver particle passing through these devices, one could per-
haps assign a probability of 1 2 to the +Z and +X property of spin for particles 
in the beam exiting the furnace. Furthermore, the SGz and SGx devices can be 
hypothesized to be “filtering” the beam into beams with +Z and +X properties, 
respectively. To test this hypothesis, we proceed with the next experiment. 

Experiment 4 

Based on the hypothesis from the previous experiment, one would expect that 
passing a beam deflected (filtered) in the +Z and +X directions once more through 
an SGz device would deflect the beam in the +Z direction once more. This is not 
observed experimentally. As shown in Fig. 7.8, the beam is once again split in the 
+Z and -Z directions! 

These experiments suggest that the properties that deflect the beam in the x 
and z directions are not independent (or not orthogonal in a mathematical sense). 
These results necessitate the use of probability amplitudes to model the state of 
particles in the beam, which take on values within the unit disc in the complex 
plane, instead of probabilities, which are real numbers between 0 and 1.

Fig. 7.8 Three Stern–Gerlach devices are aligned with alternating orthogonal axes 
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We now restate these results mathematically. In our statement, we do not pro-
vide a rigorous derivation of a quantum mechanical framework from experimental 
results; such derivations can be found in numerous quantum mechanical textbooks. 
Providing such a detailed discussion is not only lengthy and redundant but may 
also be of little use or interest to the target audience of this book. Instead, we 
provide a mathematical description that “works” to foster an intuition of quantum 
mechanics. 

We first define an orthogonal basis {|+z , |−z for the property of spin based 
on deflection in the +Z and -Z directions. Note that this differs significantly from 
the vectors +z, −z + z, −z + z,−z in Euclidean space which are not orthogo-
nal. Bra-ket notation allows one to avoid this confusion by describing quantum 
mechanical objects in a separate notation. 

We may model the particles exiting the electric furnace and entering the SGz 
device in Experiment 1 as the quantum state 

|ψ = 
1√
2
|+z + 

1 √
2 
|−z 

where the phase is omitted for simplicity. After exiting the device, we observe that 
particles are deflected in the +Z and -Z directions with probabilities 1 2 each. From 
this we deduce that 

p1(|+z ) = +z | a 2 = 1

2 

p1(|−z ) = −z | a 2 = 1

2 

The splitting action of the SGz device may be modeled as the projectors 
|+z +z| and |−z −z| for the +Z and −Z deflections, respectively. 

Now we can model the states of particles in the two beams exiting the SGz 
device: 

+Z Beam: (|+z +z|)|ψ = 1√
2
|+z .

-Z Beam: (|−z −z|)|ψ = 1√
2
|−z . 

According to Experiment 2, if we now send a particle in the beam deflected in 
the +Z direction into another SGz device and measure the intensity of the beam 
we will get 

p2(|+z , |+z ) = 
1

2 

p2(|+z , |−z ) = 0

This is apparent by computing 
+Z, +Z Beam: (|+z +z|)(|+z +z|)|ψ = 1√

2
|+z . 

+Z, -Z Beam: (|−z −z|)(|+z +z|)|ψ = 0.
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To model Experiment 3, we first need to introduce an orthogonal basis for the 
property of spin based on deflection in the +X and -X directions: 

{|+x , |−x 

where |+x = 1 √
2
|+z + 1 √

2
|−z and |−x = 1 √

2
|+z − 1 √

2
|−z . 

Similar to the {|+z , |−z +z , |−z basis, the effect of the SGx device may 
be modeled as the projectors |+x +x| and |−x −x| for the +X and -X deflections 
respectively. 

According to experimental results, for the beam deflected in the +Z direction 
and further split by the SGx device: 

p3(|+z , |+x ) = 
1

4 

p3(|+z , |−x ) = 
1

4 

These probabilities are apparent by computing the corresponding probability 
amplitudes: 

+Z, +X Beam: (|+x +x|)(|+z +z|)|ψ = 12 |+x . 
+Z, -X Beam: (|−x −x|)(|+z +z|)|ψ = 12 |−x . 
Finally, we can model Experiment 4 similarly as 
+Z, +X, +Z Beam: (|+z +z|)(|+x +x|)(|+z +z|)|ψ = 1

2 
√
2
|+x . 

+Z, +X, -Z Beam: (|−z −z|)(|+x +x|)(|+z +z|)|ψ = 1
2 
√
2
|−x . 

Corresponding to the experimentally observed probabilities 

p4(|+z , |+x , |+z ) = 1

8 

p4(|+z , |+x , |−z ) = 1

8 

As we can see, quantum mechanics successfully models these non-intuitive 
experimental observations. 
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8Photon Polarization 

We now repeat the exercise in the previous chapter, applied to photons. By study-
ing a different physical system using the quantum mechanical framework, we aim 
to strengthen the reader’s intuition. 

Let’s investigate the interaction of light and polarizing filters through a series 
of experiments (assuming perfect polarizing filters). 

Experiment 1 

In this experiment, we investigate light from an unpolarized source, e.g., sunlight 
or an incandescent light bulb. By passing this light through a polarizing light filter 
aligned horizontally, we observe that the intensity of light has been halved, as 
illustrated in Fig. 8.1.

Experiment 2 

Now we add another polarizing light filter, aligned vertically. Unsurprisingly, we 
observe experimentally that all the light is blocked as depicted in Fig. 8.2.

Experiment 3 

Let’s add one more polarizing filter, aligned diagonally at 45 degrees to either the 
horizontal or vertical polarizer. Furthermore, we can position this filter either first 
or last. As expected, all of the light remains blocked as shown in Fig. 8.3.
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Fig. 8.1 Unpolarized light enters a polarizing filter, and polarized light exits

Fig. 8.2 Polarized light is fully filtered by an orthogonal filter
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Fig. 8.3 Adding another filter after orthogonally aligned filters yields no change 

Experiment 4 

Now, let’s position the diagonally aligned polarizing filter between the horizontal 
and vertical filters. Against our classical intuition, we can experimentally observe 
that some light does pass through the filters. Figure 8.4 shows a polarizing filter 
rotated 45

◦ 
placed between the horizontally and vertically aligned filters.

We can now examine these experiments using the quantum mechanical frame-
work. As we did for the Stern–Gerlach experiments, let’s assign an orthonormal 
basis {|x , |y to photons polarized horizontally and vertically. Notice that, unlike 
the basis {|+z , |−z used for the Stern–Gerlach experiments, x and y are in fact 
orthogonal in Euclidean space. We point this out to emphasize that labels used in 
kets and bras are simply for convenience and may not bear any resemblance to 
their usual classical interpretation. 

Using the {|x , |y basis, we can model the photons from the light source as 

|ψ = 
1√
2 
|x + 

1 √
2 
eiφ |y 

up to an overall phase where φ is an unknown random phase. We can also model 
horizontally and vertically aligned polarizing filters as projection matrices: 

Fhor = |x x = 1  0  
0 0

Fver = |y y| = 0  0
0 1
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Fig. 8.4 Inserting a filter between orthogonal filters at 45
◦ 
to both filters allows light to pass 

through

Note that since photons that are not aligned with the filter are absorbed and/or 
reflected by the filter, unlike the Stern–Gerlach device, which simply separates the 
two orthogonal states and allows all particles to pass through. 

Furthermore, a diagonally aligned filter can be represented as a rotation of a 
horizontal filter using a rotation matrix with θ = 45 ◦

Rθ = cos(θ ) − sin(θ ) 
sin( θ) cos(θ)

R45◦ = 
1√
2 

1  1  
1 −1 

Fdiag = R45◦Fhor = 1√
2 

1  1  
1 −1 

1  0  
0  0

= 1√
2 

1  0  
1  0  

By passing unpolarized photons through a horizontally aligned filter, according 
to Experiment 1, we get 

ψ |Fhor|ψ = 
1

2
|x 

which matches the 50% light intensity observed experimentally. Introducing a 
vertically aligned filter as laid out in Experiment 2, we get 

ψ |FverFhor|ψ = ψ | 0  0  
0  0

|ψ = 0
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as expected. 
For Experiment 3, we can clearly see that 

ψ |FdiagFverFhor|ψ = ψ |Fdiag 
0  0  
0  0  

|ψ = ψ | 0  0  
0 0

|ψ = 0

Finally, for Experiment 4, we can compute 

ψ |FverFdiagFhor|ψ = 
1

4 
1  1  

0  0  
0  1  

1  0  
1  0  

1  0  
0  0

1
1

= 1

4 

matching the 25% light intensity observed experimentally. 
In the discussion above, we have barely scratched the surface of the rich physics 

modeled by a quantum mechanical treatment of photons. As an example, one may 
also create basis vectors 

|R = 
1 √
2
|x + 

1 √
2 
i|y , |L = 1√

2
|x − 

1 √
2 
i|y 

to represent right- and left-circularly polarized light. However, these discussions 
are beyond the scope of this text.



Part III 

The Quantum Computing Model 

Armed with the mathematical preliminaries and having seen a preview of the 
non-intuitive nature of quantum mechanics, we now begin to formally introduce 
the quantum computing model. We emphasize clarity and functional understand-
ing over exhaustive technical detail. Readers are guided through qubits, quantum 
gates, measurements, and circuit-based models—concepts that will recur through-
out the remainder of the book. Familiarity with these elements is essential for 
understanding how quantum algorithms are constructed and analyzed. 

Our discussion starts directly with the quantum circuit model. Historically, 
quantum Turing machines were the first quantum computational model. Since 
quantum Turing machines are unwieldy and non-intuitive, the ideas behind uni-
versal circuit families have been applied to formulate the quantum circuit model, 
which is polynomially equivalent to quantum Turing machines. 

To motivate the practical realization of quantum computers, we begin by briefly 
reviewing the DiVincenzo criteria, which need to be fulfilled to build a quantum 
computer [1]: 

1. A physical machine consisting of a scalable number of qubits. 

2. The ability to initialize the qubits in a known quantum state. 

3. The qubits must have coherence times longer than the time required to execute 
a quantum gate. 

4. The ability to perform a universal set of gates. 

5. The ability to measure qubits. 

The chapters in this part provide foundational knowledge and build progres-
sively toward more complex quantum computing concepts: 

Chapter 9, “Qubits, Quantum Registers, and Quantum Gates”, introduces 
qubits—the fundamental units of quantum information—and describes how mul-
tiple qubits combine into quantum registers. Essential quantum gates and their 
algebraic properties are presented.

https://doi.org/10.1007/978-3-032-03325-3_9
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Chapter 10, “Quantum Measurements and Circuits”, covers quantum measure-
ment theory, introducing measurement operators and the quantum circuit model. It 
also addresses practical aspects like bitstring sampling and the principle of deferred 
measurement. 

Chapter 11, “Superposition and Entanglement”, explores the uniquely quantum 
concepts of superposition and entanglement using quantum circuits, emphasizing 
intuition and illustrative examples. 

Chapter 12, “Classical and Reversible Computation”, bridges classical computa-
tion and quantum logic, explaining classical logic embedding into quantum circuits 
and discussing the concept of reversible computation and quantum oracles. 

Chapter 13, “Access Models and Data Representation”, introduces quantum 
access models, including sparse access and block-encoding models. It also dis-
cusses Hermitian dilation and Pauli-basis decomposition, crucial for understanding 
advanced quantum algorithms. 

Chapter 14, “Limitations of Quantum Computers”, discusses fundamental the-
oretical limits on quantum computing, including key no-go theorems such as the 
no-cloning and no-deletion theorems, and limitations on quantum speedups. 

Chapter 15, “Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms”, 
provides concrete examples of quantum algorithms demonstrating exponential 
speedups compared to classical counterparts, emphasizing complexity class sep-
arations and the potential of quantum computing. The Abelian hidden subgroup 
problem is introduced as a unifying framework for exponential speedups. 
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9Qubits, Quantum Registers, 
and Quantum Gates 

Qubits 

Classical digital computers use binary “bits,” 0 and 1, as fundamental units of 
information. Quantum computers use an analogous quantum bit, or a “qubit,” as 
their elementary unit. While a classical bit can exist in only one of two defi-
nite states, a qubit can exist in a superposition of both |0 and |1 , enabling 
fundamentally new modes of computation. 

Definition: 
A qubit (quantum bit) is a quantum system whose state is represented by a unit vector 
|ψ in a 2D complex Hilbert space H ∼= C 2. The state can be expressed as a linear 
combination (superposition) of two orthogonal basis states, typically denoted as |0 
and |1 , such that 

|ψ = α|0 + β |1

where α, β ∈ C and |α|2 + |β|2 = 1. |α|2, |β|2 are the probabilities of measuring 
the qubit in the states |0 , |1 , respectively. 

Recall that |0 and |1 are orthonormal basis states in the 0 − 1 basis, also 

referred to as the Z basis, which can be represented as the basis vectors |0 = 1 
0 

and |1 = 0 
1 

. 

Alternative orthonormal bases are often used to highlight different measurement 
contexts:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
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• The X basis consists of the states |+ and |− , defined as 

|+ = 
1√
2 
(|0 + |1 ), |− = 1√

2 
(|0 − |1 )

• The Y basis consists of the states |+i and |−i , defined as 

|+i = 
1 √
2 
(|0 + i|1 ), |−i = 1√

2 
(|0 − i|1 )

The state of a qubit may be visualized as a point on the surface of a “Bloch 
sphere,” as shown in Fig. 9.1. However, this visualization omits the global phase 
of a qubit (e.g., a quantum state |ψ =  −|0 or |ψ = i| 0 appears identical on the 
Bloch sphere) and does not readily generalize to multi-qubit systems. However, it 
is a useful visual tool to understand the relation between various qubit bases and 
the action of single-qubit gates. 

A qubit may be measured in an arbitrary (orthogonal) basis |ψ = α|I + β|II . 
According to the measurement postulate (Part II: A Brief Introduction to Quan-
tum Mechanics) the basis states |I and |II can be observed with probabilities 
|α|2 and |β|2, respectively. If no operations are applied after measurement, further 
measurements in the same basis (|I and |II ) will repeatedly yield the same qubit 
state that was originally measured. 

Physically, a qubit is typically realized using a two-state quantum system (e.g., 
the electronic states of ions) or by utilizing two energy levels of a quantum system 
(e.g., the ground state and first excited state of a quantum harmonic oscillator). 

The keen reader would automatically inquire about the implications of other 
energy levels. Indeed, they can be utilized, and this conceptual extension is known

Fig. 9.1 A Bloch sphere with the X , Y , and Z bases labeled, and an arbitrary quantum state |ψ 
on the surface of the sphere
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Fig. 9.2 Single-qubit X, Y, 
and Z gates operating on 
qubits 

Fig. 9.3 Controlled 
single-qubit cX (or CNOT) 
gates. The gates on the left 
are conditioned on the control 
qubit being in the |1 state, 
indicated by a filled circle. 
The representations at the top 
and bottom are equivalent 

Fig. 9.4 A multi-qubit 
controlled gate

as “qudits.” However, since qudits are not used in this book (and can be mapped 
onto qubits), we burden the interested reader with seeking out this information. 

Registers of Qubits 

Similar to a classical register of bits, a set of qubits may be combined into a 
register of qubits. However, the state of a register of qubits differs significantly 
from a classical register of bits. 

Definition: A register of n qubits is represented as a state vector |ψ ∈ H
where H ∼= C

2n and is described as a superposition of 2n orthogonal states 

|0 , |1 ,  .  .  .  , |2n − 1 as |ψ = 
2n−1 

i=0 
αi| i where the probability amplitudes αj satisfy 

the probability completeness relation 
2n−1 

i=0 
|αi|2 = 1 according to the Born rule. 

A quantum register is a tuple of n qubits, whose combined state is represented as 
the quantum system |ψ ∈ C2n , corresponding to a tensor product of the individual 
Hilbert spaces of the qubits.
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The combined state |ψ of the two qubits |ψ1 α1|0 + β1|1 and |ψ2 
α2|0 +β2|1 may be represented in Dirac notation as a Kronecker product, denoted 
by ⊗, of the individual qubits with various equivalent notations: 

|ψ =| ψ1 | ψ2 | ψ1 ψ2 |ψ1ψ2 

= (α1|0 + β1| 1 ) ⊗ (α2|0 + β2|1 ) 
= α1α2| 0 0 + α1β2| 0 1 + α2β1|1 0 + β1β2|1 1 

= α1α2|0  0  + α1β2|0  1  + α2β1|1  0  + β1β2|1  1  
= α1α2 

1 
0 

⊗ 1 
0 

+ α2β1 
1 
0

⊗ 0 
1 

+ α1β2 
0 
1

⊗ 1 
0 

+ β1β2 
0 
1 

⊗ 0 
1 

= α1α2 

⎛ 

⎜⎜⎝ 

1 
0 
0 
0 

⎞ 

⎟⎟⎠ + α2β1 

⎛ 

⎜⎜⎝ 

0 
1 
0 
0 

⎞
⎟⎟⎠ + α1β2

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ + β1β2

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠

and in vector form, using the computational basis: 

|ψ = 

⎛ 

⎜⎜⎝ 

α1α2 

α2β1 

α1β2 

β1β2 

⎞
⎟⎟⎠

Additional qubits will follow the same pattern, resulting in an exponentially 
large state space for the qubit register. A change in the order of the qubits in the 
quantum register simply shuffles the representation of the state corresponding to 
the definition of the Kronecker product. Registers of qubits can be used to represent 
data in various formats, which is discussed in Chapter 13: Access Models and Data 
Representation. 

Analogous to logic gates, which operate on classical bits and registers of bits, 
quantum gates operate on qubits and registers of qubits. While classical logic gates 
take one or more classical bits as input and produce classical output states deter-
ministically or probabilistically based on the input, a quantum gate acts on one or 
more qubits and outputs the same qubits in a new quantum state, generally via a 
unitary transformation. 

Unlike classical logical operations, where the input bits remain available after 
the application of a logic gate, the input state of a quantum gate is not readily avail-
able after application of a gate. By the principles of quantum mechanics, quantum 
gates are unitary operators. Thus, it is always possible to reverse a quantum gate 
to recover the input state, though this comes at the expense of losing access to 
the output state. In contrast, most classical logic gates (e.g., AND, OR) are not 
reversible; their inputs cannot, in general, be reconstructed from the outputs.
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Quantum Gates 

In the gate-based quantum computing model, operations on qubits are represented 
as quantum gates, or simply gates. Some quantum gates are analogous to classi-
cal gate operations, e.g., the X gate is analogous to a classical NOT operation. 
However, quantum gates may not have a corresponding classical counterpart, e.g., 
a Hadamard H gate. 

Definition: A quantum gate operation on n qubits is represented as a unitary matrix 
U ∈ C2n×2 n . 

Quantum gates can be conveniently represented as complex unitary matrices, in 
line with the column vector representation of qubits. The simplest gates are single-
qubit gates represented as SU (2) ∈ C2×2 matrices. Some important single-qubit 
gates are the identity gate I , the Pauli gate set {X , Y , Z }, and the Hadamard gate H . 
Their matrix representations and descriptions are provided in Table. 9.1.

As an example, the X gate is represented as the unitary matrix 

X = 0  1  
1  0  

The X gate is the quantum analog of the classical NOT gate. As an example, 
applying the X gate to the basis state |0 yields |1 and vice versa: 

X |0 = 0  1  
1  0  

1 
0

= 0 
1 

= | 1

X |1 = 0  1  
1  0  

0 
1

= 1 
0 

= |0

and in general 

X |ψ = X (α|0 + β|1 ) = β|0 + α|1

Table. 9.1 lists various commonly used gates with their matrix representations 
and descriptions. 

Quantum gates can also act on n qubits, in which case they can be represented 
in SU (2n) ∈ C2n× 2n . Multiple qubit gates typically arise as controlled versions 
of gates, of which cX (or cNOT ) is a commonly used one. A controlled gate 
manipulates the state of a “target qubit,” conditioned on the state of a “control 
qubit.” The SWAP gate is another common gate that swaps states between qubits. 
Controlled gates can be represented in block form. As an example, the matrix
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representation of the cX gate, where the first qubit from the left is the control 
qubit and the second qubit is the target qubit, is 

cX = |0 0| ⊗ I + |1 1| ⊗ X = I 
X 

= 

⎛ 

⎜⎜⎝ 

1 0
0 1

0 1
1 0

⎞
⎟⎟⎠

where | | is an outer product. 
Controlled gates may be conditioned on the |1 state as well. A cX gate 

conditioned on |1 operates as 

|0 0| ⊗ X + |1 1| ⊗ I = X 
I

= 

⎛ 

⎜⎜⎝ 

0 1
1 0

1 0
0 1

⎞
⎟⎟⎠

In general, controlled gates may be conditioned on multiple qubits and may 
apply any general unitary operation. A general unitary gate U conditioned on the 
logical state of k qubits represented as a bitstring bin(i), where the bitstring is 
formed from a binary representation of {i ∈ Z| i ≥ 0}, operates as 

ckU = 
j i 

|j j| ⊗ I + |i i| ⊗ U

and can be represented as a block-diagonal matrix with the matrix representation 
of U on the ith block and I on the remaining blocks: 

ckU = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

I 
. . . 

I 
U 

I 
. . . 

I 

⎞ 

⎟⎟ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

All quantum gates are unitary operations, which ensures the normalization of 
quantum states according to the Born rule. Consequently, all quantum gates are 
also reversible operations, with the reverse operation simply being the Hermitian 
transpose or conjugate transpose of the quantum gate. 

Gates acting on qubits correspond to left multiplication, with the ket represent-
ing the quantum state of the qubits. As an example, consider a register of three
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qubits in the state |000 . Applying a Hadamard gate to the first qubit (from the 
left) and a Pauli X gate to the last qubit is represented as 

(H ⊗ I ⊗ X )|000 = (H ⊗ I ⊗ I) |001 = 1√
2 
(|001 + |101 )

As another example, consider a register of two qubits in the state |00 with a 
Hadamard gate applied to the first qubit followed by a CNOT gate controlled by 
the first qubit applied to the second qubit: 

(|00 00| + |01 01| + |10 11| + |11 10|)|00 = | 00 + |11

Note that the order of operations progresses from right to left as usual for 
matrix multiplication, which is the opposite of the order used for quantum circuits 
introduced in Chap. 10: Quantum Measurements and Circuits. It is customary not 
to include the I gate when the qubits on which the operation is applied are implied. 

Quantum gates are one of the building blocks of quantum circuits (discussed in 
Chap. 10: Quantum Measurements and Circuits). They are represented in quantum 
circuits as boxes placed on lines representing the qubits they act on. The label 
inside the box indicates the type of gate. Multiple quantum gates may also be 
combined in this representation with a description for brevity when describing 
algorithms. The control bits in controlled gates are represented as filled or empty 
circles, depending on whether the gate is conditioned on that qubit being in the 
state |0 or |1 respectively. 

Like classical Boolean logic gates, quantum gates can also form a universal 
gate set. The fundamental difference is that while classical universal gate sets can 
implement arbitrary logical operations exactly, quantum universal gate sets can 
approximate arbitrary unitary operations to arbitrary precision. 

This implies that any arbitrary quantum gate can be approximated using a uni-
versal gate set. The Solovay–Kitaev theorem [1] is a central theorem in quantum 
computing which shows that the approximation error using a universal gate set 
scales as O logc 1 for a single-qubit gate where c ≈ 2 and O m logc m for a 
set of mCNOT s and single-qubit unitaries. This corresponds to a polylogarithmic 
increase in the approximation using a universal gate set over the original number 
of arbitrary gates, which is efficient. The statement of the theorem for qubits is as 
follows. 

Theorem [2]: Let G be an instruction set for SU (d ), and let a desired accuracy 
0 be given. There is a constant c such that for any U ∈ SU (d ) there exists a 

finite sequence S of gates from G of length O(logc(1 )) and such that U − S ≤ . 

The physical interpretation of a quantum gate depends on the underlying archi-
tecture. For a superconducting transmon qubit architecture, quantum gates are 
typically implemented as microwave pulses corresponding to the resonant fre-
quency of the transmon qubits. Underlying hardware implementations can have
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a variety of gate sets. Algorithms are typically agnostic to the hardware imple-
mentation since all quantum gates are converted to the target hardware’s gate set 
(implemented as physical processes) in a process called transpilation. We discuss 
the quantum computer programming stack in more detail in Part IV: Programming 
Quantum Computers. The underlying hardware may also have a specific connec-
tivity graph, which dictates the possibility of controlled gate operations between 
qubits. 

The SWAP gate is another common gate that swaps the states between qubits, 
i.e., performs the map |ψ φ → |φ ψ . While this may seem trivial as inter-
changing the order of qubits, it is typically necessary for applied quantum 
computing on realistic hardware which does not have all-to-all connectivity for 
two-qubit interactions between qubits. 

The transpilation process introduces SWAP gates to “move” qubit states around 
to allow controlled operations between any set of qubits that might not be con-
nected by the topology of the target hardware. Although this is not an issue 
for “fault-tolerant” or “error-corrected” devices, a multitude of SWAP gates can 
introduce unwanted noise into the system in current realistic devices, making 
them a point of concern for NISQ hardware. Similarly, controlled gates (or 
multi-controlled) gates typically introduce errors larger than those of single-qubit 
gates. 

References 

1. A. Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv., 
52(16), pp. 1191–1249, (1997). https://doi.org/10.1070/RM1997v052n06ABEH002155 

2. C. M. Dawson, M. A. Nielsen, The Solovay-Kitaev algorithm. Quantum Info. Comput., 6(1), 
pp. 81–95, (2006)

https://doi.org/10.1070/RM1997v052n06ABEH002155


10Quantum Measurements and Circuits 

In this chapter, we introduce the measurement operation to read out the states 
of qubits. Later in the chapter, we combine registers of qubits, gates, and 
measurements to form quantum circuits. 

A quantum state is defined using probability amplitudes. To read a state, a 
series of measurements of the state needs to be performed, and the measurement 
statistics will correspond to the probability amplitudes of the quantum state and 
the basis used for the measurement [1]. Note that, in general, to exactly infer 
the probability amplitudes of a quantum state through measurements, an infinite 
number of measurements is needed in accordance with the Law of Large Numbers, 
regardless of the number of qubits. 

Measurement Operators 

We first define a measurement operator Mm for measuring a quantum state |ψ . 

Definition: Given a quantum state |ψ and a measurement operator Mm where m is 
a measurement outcome, the probability of measuring an outcome m is. 

p(m) = ψ |M † mMm| ψ
and the state of the quantum system after measuring an outcome m is 

Mm|ψ √
p(m) 

such that the completeness relation 

m 
p(m) = 1
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Fig. 10.1 Symbol for a measurement operation 

is satisfied. 
Measurement operators are projection operations. In gate-based quantum com-

puting, projective measurements in the computational basis (the Z or |0 -|1 basis) 
are typically used corresponding to 

M0 = |0 0| = 1  0  
0  0  

, M1 = |1 1| = 0 0
0 1

and are represented by a “meter” symbol in quantum circuits (Fig. 10.1). 
For measurements over multiple qubits, we use the notation Mj where j is an 

integer or bitstring indicating the measurement outcome. In quantum algorithms, 
measurements may be performed over a few qubits in registers or all qubits. 

As an example, consider a two-qubit system in the state 

|ψ = 
1

2 
(|00 + |01 + |10 + | 11 )

with a measurement being performed on only the first qubit. The first qubit is 
measured in the state |0 with 

p(0) = ψ |M † 0 M0|ψ = ψ |M0|ψ 

= 1

2 
(|00 + |01 + |10 + |11 ) 

† 
(|0 0| ⊗ I)

1

2 
(|00 + |01 + |10 + |11 ) = 1

2 

and the final state after measuring the first qubit in the state |0 is 

M0|ψ √
p(0) 

= 
(|0 0| ⊗ I) 1

2 (|00 + |01 + |10 + |11 )
1 √
2 

= 
1 √
2 
(|00 + |01 )

Note the renormalization of the system according to the Born rule [2]. Similarly, 
the first qubit is measured in the state |1 with p(1) = 12 and the final state is 

M1|ψ √
p(1) 

= 
(|1 1| ⊗ I) 1

2 (|00 + |01 + |10 + |11 )
1 √
2 

= 
1 √
2 
(|10 + |11 )
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Measurements may be performed to either read out an entire quantum register 
or as a flag to indicate the successful completion of an operation. Qubits used as a 
flag are typically called ancilla qubits, and their measurement can signal whether a 
desired computational step has succeeded or requires repetition. 

Note that measurements will uncover the squared moduli (probability) of the 
complex numbers (probability amplitudes) defining the probability amplitude of a 
quantum state. To recover additional information, e.g., the phases of the probability 
amplitudes, a process known as quantum state tomography [3] is performed. 

Quantum states also have an overall phase, which is not measurable; only a relative 
overall phase between two states is measurable. As an example, consider the two 
quantum states 

|ψ = α|0 + β|1 , |φ = i(α|0 + β|1 )

The phase i distinguishes |ψ from |φ and cannot be detected from projective 
measurements alone, since 

ψ M † 0 M0 ψ = φ M † 0 M0 φ = |α|2 

ψ M † 1 M1 ψ = φ M † 1 M1 φ = |β|2

A hardware implementation will typically only allow a Z basis (|0 -|1 ) measure-
ment. To perform measurements in another basis (e.g., X or Y bases), the qubits can 
be “rotated” to the desired basis by applying gate operations and then measured. This 
is discussed later in this chapter. 

Bitstring Sampling 

Bitstring sampling is straightforward: circuits are executed repeatedly, and qubit 
registers are measured at the end of each execution. The sampled bitstrings are 
then used for further computation. Sampling a quantum state |ψ ∈ C2n can be 
described mathematically as sampling from the distribution 

p(j) = ψ |M † j Mj|ψ ∀ j ∈ 0, 2n − 1

which will yield an outcome j with probability p(j). In its raw form, data output 
from a quantum computer is a distribution of sampled bitstrings.
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Quantum Circuits 

Working with algebraic forms of algorithms can be unwieldy and difficult to 
visualize. Quantum circuits are a convenient visual representation of quantum algo-
rithms, clearly showing sequences of gates and measurements acting on qubits. 
Each horizontal line in a quantum circuit diagram represents a qubit, and each 
symbol or block placed on these lines represents quantum gates or measurements. 

For example, consider a three-qubit register |ABC . Suppose an H gate is 
applied to qubit A,  a  n X gate is applied to qubit C, followed by a CNOT gate 
controlled by qubit A acting on qubit B, and, finally, all qubits are measured. 
These operations can conveniently be represented in a quantum circuit, as shown 
in Fig. 10.2. 

Note that the operations in a quantum circuit are ordered from left to right, 
unlike algebraic notation, which typically lists operations from right to left. For 
instance, the sequence of unitary operations UAUBUC |ψ is represented in a 
quantum circuit as shown in Fig. 10.3. 

Additionally, controlled operations conditioned on the control qubit being either 
in the state |1 or |0 are represented using filled or empty circles, respectively, as 
shown in Fig. 10.4. 

Quantum registers can be ordered using either little-endian or big-endian nota-
tion. In little-endian ordering, the rightmost qubit in algebraic notation is indexed 
as 0, while in big-endian ordering, the leftmost qubit indexed as 0. In a quantum 
circuit, the first qubit from the top of a register is indexed as 0. When implementing 
quantum algorithms, endian consistency is critical, mixing the ordering results in

Fig. 10.2 Quantum circuit representation of gate and measurement operations 

Fig. 10.3 Order of operations in circuit representation for UAUBUC |ψ 

Fig. 10.4 Controlled X gates 
conditioned on Left: |1 ; 
Right: |0 
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Fig. 10.5 Left: A SWAP 
gate; Right: Decomposition 
of a SWAP gate 

a shuffling of the basis states. The shuffling leads to the measurement distribution 
being distorted, leading to an incorrect interpretation of the measurement distri-
bution. Both big- and little-endian conventions are used in libraries for quantum 
computing. As examples, Qiskit [4] uses little-endian notation, while Pennylane 
[5] uses big-endian notation. We illustrate this using a register of three qubits 
qreg = |q1q2q3 . In Qiskit (Little endian), qubit q3 will be indexed classically as 
qreg[0], and in Pennylane (Big endian) it will be indexed as qreg[2]. Additionally, 
Pauli strings (introduced in Chap. 13: Access Models and Data Representation) 
must also be indexed consistently. In this book all figures and equations are in 
big-endian notation, and all Qiskit code is in little-endian notation. 

Another important gate we revisit here is the SWAP gate. In quantum com-
puters, operations between arbitrary qubits are not always directly possible due to 
the physical connectivity of the qubits. However, it is always possible to shuttle 
around the quantum state of a qubit using SWAP gates. The symbol for a SWAP 
gate and its decomposition are shown in Fig. 10.5. 

Quantum circuits can be viewed as directed acyclic graphs, where the nodes 
represent gates and the edges represent the qubits on which the gates operate. 
Quantum circuits may also represent hybrid quantum–classical operations, such as 
mid-circuit measurements, classical conditional logic, and dynamic circuit struc-
tures. However, these advanced circuit concepts are outside the scope of this book 
and are not used in the remainder of this book. 

In practice, both the circuit depth (the number of sequential gate layers) and 
circuit width (the number of qubits used) are important resource metrics that affect 
whether a given circuit can be realistically implemented on current hardware. Spe-
cialized algorithms and quantum compilers exist that optimize circuit depth and 
width, often by reordering gates, identifying redundant operations, or mapping 
the circuit to the native gate set of the target hardware. Furthermore, since real 
quantum hardware supports only a limited set of native gate sets, quantum circuits 
must often be compiled from high-level descriptions into sequences of hardware-
supported gates, which can introduce additional overhead. The effects of noise 
and decoherence in current devices make minimizing circuit depth critical for 
obtaining reliable results. Some platforms now also support classical feedback, 
where measurement outcomes can influence subsequent quantum operations within 
a circuit.
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Fig. 10.6 Left: Circuit with gate operation controlled by measurement outcome. Right: Equiva-
lent circuit with measurement deferred to the end of the circuit 

Principle of Deferred Measurement 

The principle of deferred measurement states that measurements can always be 
pushed forward or “deferred” to the end of a quantum circuit. If the outcome 
of a mid-circuit measurement is used to classically control subsequent quantum 
gates, one may simply replace the gate with controlled quantum gates as shown in 
Fig. 10.6. 
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11Superposition and Entanglement 

Superposition is a unique property of quantum computing [1]. A quantum state can 
exist in a superposition of states. As an example, a single qubit |ψ can exist in 
a superposition of |0 and |1 . A register of n qubits can exist in an exponentially 
large superposition of N = 2 n states, which form an orthonormal basis in the 
Hilbert space H : C2 n . Representation of an arbitrary quantum state of n qubits 
requires O(2n) classical registers. This compact representation as a superposition 
of basis states enables exponentially efficient representation of data on quantum 
computers. 

The |0 , |1 basis vectors are assigned to the Z basis of qubits by convention. 
Hardware implementations of qubits will typically allow measurement in only one 
basis, e.g., the spin state of a fermion. To measure in another basis in hardware 
implementations, it is convenient to rotate the basis of the qubits and measure 
them instead of implementing measurement directly in a rotated basis. However, 
single-qubit rotations do not correspond to arbitrary unitary rotations. Instead, they 
are limited by the Kronecker product structure of the qubits H : C2 n . 

The Hadamard (H ) gate puts qubits in uniform superposition, in which all basis 
states have the same probability amplitude. As an example, we provide code below 
to put qubits in uniform superposition and measure their states as shown in the 
quantum circuit in Fig. 11.1 with the output shown in Fig. 11.2. The Hadamard 
gate is applied to all three qubits to put them in the uniform superposition state 

(H ⊗ H ⊗ H )|000 1

2 
√
2 
(|000 001 010 111 ) 

All three qubits are then measured, which yields one of the basis states 
|000 ,|001 ,|010 , …,|111 . This process is repeated 215 = 32768 times to obtain 
the distribution shown in Fig. 11.2. As the number of measurements is increased,
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the distribution of measurements for qubits in uniform superposition converges to 
the uniform distribution: 

#!/usr/bin/python3 

from matplotlib import pyplot as plt 

import qiskit 

from qiskit_aer.primitives import SamplerV2 

from qiskit.visualization import plot_histogram 

# Create a register of 3 qubits 

myQRegister = qiskit.QuantumRegister(3, ’\psi’) 

# Create a register of 3 classical bits 

myCRegister = qiskit.ClassicalRegister(3,’ClassicalBits’) 

# Create a quantum circuit with using myRegister 

myCircuit = qiskit.QuantumCircuit(myQRegister, myCRegister) 

# Hadamard gates on al qubits 

myCircuit.h(myQRegister) 

# Measure all the qubits in myQRegister and store state in myCRegis-

ter 

myCircuit.measure(myQRegister,myCRegister) 

# Simulate the circuit 

sampler = SamplerV2() 
job = sampler.run([myCircuit],shots=2**15) 
result = job.result()[0].data.ClassicalBits.get_counts() 

# Plot a bar chart of all the results

plot_histogram(result, title=’Uniform Superposition’)

plt.show()

Entanglement is another property unique to quantum computation [1]. Entan-
gled qubits have a correlated state. A maximal entanglement for a pair of qubits 
means that the state of one qubit can be fully determined by measuring the state 
of the other qubit. The simplest set of maximally entangled states are two-qubit 
states known as the Bell states: 

+ = 1√
2 
(|00 + |11 ), − = 

1√
2 
(|00 − |11 ) 

+ = 1√
2 
(|01 + |10 ), − = 1√

2 
(|01 − |10 )
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Fig. 11.1 Circuit putting all qubits in superposition 

Fig. 11.2 Measurements demonstrating a uniform superposition of basis states

If the first qubit of the state + = 1√
2 
(|01 + |11 ) is measured as |0 , the 

second qubit is also in the state |0 , and if the first qubit is measured as |1 , 
the second qubit is also in the state |1 . Note that this is different from the state 
|ψ = |00 + |11 , which is not an entangled state. The generalization of fully 
entangled states for more than 2 qubits are known as GHZ states. 

Mathematically, entangled qubits cannot be separated into a Kronecker product. 
The state |00 can be written as |0 ⊗ |0 : however, it is impossible to separate

+ into such a Kronecker product of Z basis states or any other basis formed 
by a tensor product of the bases of the individual qubits. Similarly, single-qubit 
gates cannot rotate an entangled quantum state to a state separable into Kronecker 
products. 

Entangled states are necessary for quantum registers to go from a Hilbert space 
described by individual U (2) rotations of qubit states to the larger Hilbert space 
described by U (2n) rotations of a quantum register.
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Fig. 11.3 Circuit to entangle 
two qubits by preparing a 
Bell state 

Fig. 11.4 Measurements 
demonstrating the 
entanglement of two qubits 

In the following code we provide an example of a circuit, shown in Fig. 11.3, 
creating the entangled state + with the output measurements shown in 
Fig. 11.4: 

#!/usr/bin/python3 

from matplotlib import pyplot as plt 

import qiskit 

from qiskit_aer.primitives import SamplerV2 

from qiskit.visualization import plot_histogram 

# Create a register of 2 qubits 

myQRegister = qiskit.QuantumRegister(2, ’\psi’) 

# Create a register of 2 classical bits 

myCRegister = qiskit.ClassicalRegister(2,’ClassicalBits’) 

# Create a quantum circuit with using myRegister 

myCircuit = qiskit.QuantumCircuit(myQRegister, myCRegister) 

# Hadamard gates on first qubit

myCircuit.h(0)
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# CNOT gate controlled by first qubit on second qubit 

myCircuit.cx(0,1) 

# Measure all the qubits in myQRegister and store state in myCRegis-

ter 

myCircuit.measure(myQRegister,myCRegister) 

# Simulate the circuit 

sampler = SamplerV2() 
job = sampler.run([myCircuit],shots=2**15) 
result = job.result()[0].data.ClassicalBits.get_counts() 

# Plot a bar chart of all the results 

plot_histogram(result, title=’Bell State’)

plt.show()
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12Classical and Reversible Computation 

All quantum gates (except measurement) are reversible since they are unitary oper-
ations. Therefore, the corresponding inverse operation of a gate O is O†, where † 
denotes the Hermitian conjugate of O. For a quantum circuit without a measure-
ment operation, the inverse operation is an application of the Hermitian conjugates 
of the gates in reverse order. 

However, classical computation operations are not necessarily reversible, e.g., 
the classical logic gates AND and OR. Regardless, it is possible to perform all 
classical computation operations on quantum computers [1]. 

Classical Computation on Quantum Computers 

First, we note that the classical NAND gate is a universal classical gate, i.e., any 
classical Boolean operation can be represented as a combination of NAND gates. 

We also note that the FANOUT operation may be needed in classical logic 
circuits involving combinations of NAND gates. Therefore, if the NAND operation 
and FANOUT operation can be performed on a gate-based quantum computer, then 
any classical computation can be performed on a quantum computer. 

A reversible version of these gates can be formed using ancillary qubits, or “an-
cilla” qubits. Ancilla qubits are often utilized in quantum computing to implement 
non-unitary (possibly irreversible) operations as a unitary (reversible) operation. 
The measured state of ancilla qubits can either be discarded at the end of the 
computation, used to “post-select” the unmeasured state in the remaining qubits 
(e.g., continue if ancilla is measured as |1 , restart if measured as |0 , or used 
for branching operations for the remainder of a quantum–classical workflow using 
dynamic circuits.
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Fig. 12.1 A quantum 
implementation of Left: a 
NAND gate; and Right: a 
FANOUT operation 

Even though this approach does not make efficient use of quantum resources, 
it implies that all classical computation can be performed on quantum computers. 
Both the NAND and FANOUT operations can be performed using a “controlled-
controlled-NOT,” or a ccNOT gate: 

ccNOT = 

⎛ 

⎜⎜⎜⎜⎜⎝ 

1 
. . . 

1 
1 

1 

⎞ 

⎟⎟⎟⎟⎟⎠

as shown in Fig. 12.1. 
Note that measurements are not reversible since they are projection operations, 

which are rank-deficient (ignoring trivial cases, e.g., I ). 
Even though this approach does not make efficient use of quantum resources, it 

implies that all classical computation (using the universal circuit family introduced 
in Lecture 3: Theory of Computing) can be performed on quantum computers. 
Both the NAND and FANOUT operations can be performed using a Toffoli gate, 
or a ccNOT gate as shown in Fig. 12.1. Note that although the FANOUT operation 
copies classical information, this does not generalize to arbitrary quantum states 
and does not violate the no-cloning theorem. Note also that it is trivial to convert 
the NAND gate to an AND gate by supplying 0 as an input instead of 1. 

Reversible Computing 

We have shown above that all classical computing can be performed using quantum 
circuits, simply using the fact that NAND gates (a universal classical gate set) and 
FANOUT operations are sufficient to implement any Boolean circuit. However, 
this strategy requires a large number of ancilla qubits to store intermediate com-
putations, often referred to as “garbage.” To alleviate this issue of excess garbage, 
we introduce here Bennet’s “uncompute” trick to remove garbage collected in 
ancilla qubits. 

Consider the task of computing the sequence of AND operations: 

f (a, b, c) = a ∧ b ∧ c



Reversible Computing 109

We may compute this function by composing reversible AND gates as shown 
in Fig. 12.2. For this example a ∧ b may be considered as garbage and a ∧ b∧ c is 
the desired result. To make the ancilla containing the garbage a ∧ b available for 
any subsequent computation, we can “uncompute” a ∧ b and a ∧ b ∧ c as shown 
in Fig. 12.2. 

A general recipe for efficient reversible computation, known as Bennett’s 
uncompute trick [2], is shown in Fig. 12.3 for a general Boolean operation 
f : {0, 1}n → {0, 1}o given a corresponding unitary Uf . 

This uncompute trick can be used to prove efficient reversible computation of 
classical computation as follows. 

Theorem [2]: A multi-tape Turing machine using time T and space S can be 
simulated reversibly (or using a quantum circuit) using either. 

• O T 1+ time and O(S log T ) space 
• O(T ) time and O(ST ) space

Fig. 12.2 Left: Composing AND gates to compute a ∧ b ∧ c; Right: Identical computation with 
garbage removal 

Fig. 12.3 Classical computation performed for n input bits and o ≤ m output bits reversibly with 
ancillae restored to |0⊗m for further computation 
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for any 0. 
We emphasize that these constructs are motivated by the need to establish 

relations between classical and quantum computational complexities and do not 
indicate the usual implementation of quantum algorithms for applied problems. 

Quantum Oracles 

It is important to note that any arbitrary Boolean function f : {0, 1}n → {0, 1}m
can be implemented in a reversible manner as shown in Fig. 12.4: 

Uf |x y = |x y ⊕ f (x )

Since all the input bitstrings x and y can be inferred from the output, Uf is 
reversible. 

We will refer to an oracle of this form as a quantum “basis state” oracle. 
An actual implementation of the gate (or collection of gates) Uf is often 

unknown and unnecessary for analysis. Oracles are a useful abstraction (and 
idealization) of some computational procedure. They are used to analyze the com-
putational power of various computing machines and are often used to identify 
complexity classes. Such examples will be shown in Lecture 15: Simon’s Deutsch 
jozsa, and Bernstein vazirani Algorithms. 

To analyze the complexity of some quantum algorithms, it suffices to know that 
Uf exists with an assumption of “black box” or “oracle” access. 

A slightly more useful form of oracles is a quantum “phase oracle.” Let’s now 
consider a Boolean function g : {0, 1}n → {0, 1} that outputs a single bit. A phase 
oracle simply “marks” the output bits with a phase as shown in Fig. 12.5: 

Ug |x = (−1)g(x)|x 

Fig. 12.4 A reversible implementation of a Boolean function f : {0, 1}n → {0, 1}m where x ∈ 
{0, 1}n and y, f (x) ∈ {0, 1}m and ⊕ denotes a bitwise XOR operation 

Fig. 12.5 A quantum phase 
oracle
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Fig. 12.6 Using a quantum 
basis state oracle as a phase 
oracle 

We now demonstrate a procedure to convert a quantum basis state oracle into a 
quantum phase oracle. Consider Uf with m = 1 in the following quantum circuit 
(Fig. 12.6). 

Note: |− = HX |0 = 1√
2 
(|0 − |1 )

|ψ1 |x 1 √
2 
(|0 − |1 ) 

|ψ2 |x 1√
2 
(|f (x) ⊕ 0 − |f (x) ⊕ 1 ) 

= |x 1√
2 
(|f (x) − |¬f (x) )

Considering each case for f (x) ∈ {0, 1} separately: 

|ψ2 
|x 1 √

2 
(|0 − |1 ), f (x) = 0 

|x 1√
2 
(|1 − |0 ), f (x) = 1

which simplifies to 

|ψ2 (−1)f (x)|x − 

which is effectively a phase oracle with an ancilla qubit. 
In this chapter, we have provided an overview of connections between classi-

cal computing and quantum computing in the context of manipulating classical 
data in the form of bitstrings. Although this is useful to demonstrate the capa-
bility of quantum computers to process classical information and will be used in 
Lecture 15: Simon’s Deutsch Jozsa, and Bernstein Vazirani Algorithms, to show 
an exponential speedup of quantum computers over classical computers, practical 
quantum algorithms do not rely on this framework. In the next chapter, we will 
introduce access models and data representations that are used to develop quantum 
algorithms for scientific and engineering computation tasks.
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13Access Models and Data 
Representation 

Classical information is represented as bitstrings in classical computers. The most 
direct extension to quantum computers—called basis embedding—represents a 
classical bitstring (e.g., “0101010010”) as the quantum state |0101010010 ,  as  
shown previously. However, this representation is inefficient since it requires the 
same number of qubits as classical bits and does not exploit the additional quan-
tum degrees of freedom, i.e., the phase and probability amplitudes of the basis 
states. For example, a vector a ∈ R2 n in basis embedding would require O(2n) 
qubits, while amplitude encoding can represent it with only n qubits. 

Embedding data into the phase of a basis state is known as phase or angle 
embedding. Similarly, embedding data into the probability amplitude of a basis 
state is known as amplitude encoding or amplitude embedding [1]. Both ampli-
tude embedding and phase embedding are limited by the definition of quantum 
states, i.e., the normalization due to the Born rule and the periodicity of phases. 
Amplitude encoding is the method of choice for quantum algorithms for scientific 
computing and engineering [2]. Various other encoding methods are used in quan-
tum machine learning applications, and they are discussed in Chap. 38: Quantum 
Machine Learning In the remainder of this book, we exclusively utilize amplitude 
embedding unless specified otherwise. 

Consider the vector 

a = 2n−1 

i=0 aie i

where ei denotes the ith standard basis vector and n is the number of qubits. If 
a vector has less than 2n components, the remainder of the vector may be zero-
padded without any loss of generality. An amplitude encoding of this vector is 

|a = 1 

a 2 

2n−1 

i=0 
ai|i
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where |i is the ith basis vector of the quantum state. In this notation, |a represents 
the quantum state whose amplitudes encode the entries of a, while |i denotes the 
ith standard basis vector. 

In comparison, a classical register of n bits represents an element of {0, 1}n ,
and a vector a ∈ R2 n requires O(2n) bits for storage, e.g., using the IEEE-754 
floating-point format [3]. In amplitude encoding, n qubits suffice, provided the 
state is normalized. 

Access models in quantum computing specify how data is provided to quan-
tum algorithms. The complexity of such algorithms is typically measured by the 
number of oracle queries—calls to unitary operators that encapsulate data access 
or operations, abstracting implementation details. 

Oracles are essential because they enable algorithms to work with data or sub-
routines whose explicit implementation may be unknown or even intractable. For 
example, oracles frequently provide access to matrix entries or prepare quan-
tum states in scientific computing applications. Efficient data access is critical for 
algorithmic performance and scalability. 

Two principal access models for matrices are 

• The sparse access model, optimized for matrices with few non-zero entries per 
row or column. 

• The block-encoding model (also known as qubitization), which embeds a matrix 
as a block of a larger unitary to enable efficient polynomial transformations. 

In both access models, oracles serve as unitary operations that act as “black boxes,” 
encapsulating specific operations or data needed by the algorithm. In the case of 
a linear system problem Ax = b this could be the entries of the matrix A or a 
method to prepare the vector b. 

The complexity of quantum algorithms is often defined by the number of oracle 
accesses required, as these oracles abstract the implementation details of com-
plex operations, allowing algorithms to access necessary information efficiently. 
The number of accesses or “queries” to oracles is often referred to as the query 
complexity of a quantum algorithm. A typical underlying assumption is that the 
information being accessed using the oracle is efficiently computable. For most 
algorithms, an oracle implementation that scales polylogarithmically in the num-
ber of gates with the problem size (or polynomially with the number of qubits) is 
considered efficient. 

There are various oracles for different operations in quantum algorithms. An 
early access model for matrices, on which the HHL quantum linear system algo-
rithm is based, provides access to an approximation of the unitary matrix operator 
U ≈ e itA, where A is a Hermitian matrix, through a Hamiltonian simulation proce-
dure (Chap. 28: Hamiltonian Simulation Techniques). For the ideas and algorithms 
considered in this book, the more recent and efficient sparse access model [4] and 
block-encoding model [5, 6] are used to access the entries of a matrix, and a state 
preparation oracle is used to prepare a quantum state used by an algorithm.
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We will first introduce the Sparse Access Model and the Block-encoding model 
for matrices. Subsequently, we introduce the Hermitian dilation trick to encode an 
arbitrary matrix as a Hermitian matrix. We then provide a (usually inefficient) 
recipe to block-encode oracles for matrices as a sum of Pauli strings. 

Sparse Access Model 

The sparse access model is designed for matrices with a high proportion of zero 
entries. It uses position and value oracles (unitary operations) to efficiently retrieve 
non-zero elements: 

Position Oracle Opos 
A : Provides the position of non-trivially zero elements in a 

row: 

Opos 
A : |i, v → |i, j(i, v) ∀ i, j ∈ {1,  .  .  .  ,  N }, v ∈ {1, . . . , d}

i : row (or column) number 

j : column (or row) number. 

v : enumeration of (typically) non-zero entries in row (or column) i. 
Value Oracle Oval 

A : Provides the value of matrix elements: 

Oval 
A : |i, j, z → i, j, Ai,j ⊕ z ∀z ∈ {0, 1}⊗s

z : initialized bitstring of length s 
Ai,j ⊕ z ∈ {0, 1}⊗s : a bitstring of length s encoding the matrix entry Ai,j ∈ C. 

Block-Encoding Model 

A more powerful and general access model is the block-encoding model. A block-
encoding oracle is access to a unitary (any quantum circuit) of the form 

UA = A/α ∗ 
∗  ∗  

where α ∈ R + is a subnormalization factor, A is the desired matrix to be embedded 
in UA, and ∗ are irrelevant entries. 

This form is central to methods based on qubitization and quantum signal pro-
cessing, which are the most powerful and optimal methods for most problems. The 
main idea is to apply the block-encoded unitary to a state 

UA|0 b = A/α ∗ 
∗  ∗  

b 
0 

= Ab/α
∗ = 1

α 
|0 Ab + |⊥
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Measuring the first qubit in the state |0 indicates a successful matrix–vector 
multiplication. 

Note that although this 2×2 block encoding uses a single ancilla qubit, a regis-
ter of qubits can also be used for block encoding, which requires m ancilla qubits 
to be measured as |0 ⊗m. We also note that since UA is unitary, it is necessary that 
A/α2 ≤ 1. 

The success probability of successfully measuring the ancilla qubits as |0 ⊗m 

can be defined as follows [2]. 
Consider any α such that A/α 2 ≤ 1 so that 

A/α = 0|⊗m ⊗ In UA |0 ⊗m ⊗ In

The probability of successfully measuring |0 ⊗m is 

p |0 ⊗m = 
1 

α2 Ab 
2 

A block-encoding of this form is often written in short-hand as a “(α, m ) block-
encoding of A.” 

A block-encoding may also encode matrices inexactly, i.e., 

A − α 0m ⊗ In UA 0m ⊗ I n ≤

Such block-encodings are often referred to as a “(α, m ) block-encoding of 
A.” 

Note that it is always possible to restate a (α, m ) block-encoding of A as a 
(αβ, m ) block-encoding of A/β (where β 0). 

Block-encoded oracles also allow addition, products, and tensor products of 
matrices. Block-encoded matrices may be added using the linear combination of 
unitaries method, discussed in Chap. 22: Linear Combination of unitaries, and 
procedures for multiplication are covered in Chap. 26, Matrix Vector Multiplica-
tions and Affine Linear Operations. References [5, 11, 12] provide implementation 
details of these operations. The specifics of oracle implementations for access mod-
els are beyond the scope of this book since they are problem-dependent and an 
active area of research. Recent work has made progress in developing circuits to 
encode various classes of sparse matrices [7, 13]. 

We finally note that a sparse access model can be transformed into a block-
encoding model using O(1) queries to Opos 

A and Oval 
A and O(poly log n) additional 

gates [14].
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Hermitian Dilation 

We note that various formalisms in quantum computing including oracles for 
matrices may require the matrices to be Hermitian. In case a matrix A is not 
Hermitian, its Hermitian dilation H can often be used instead: 

H = 0 A 
A† 0 

The Hermitian dilation has the same condition number as A, is diagonalizable, 
and the eigenvalues λi of the matrix H are pairwise ±σi, the singular values σi of 
the matrix A. Therefore, any guarantee of positive- or negative-definiteness of the 
matrix A is lost. This is apparent by rewriting H as its eigendecomposition using 
the singular value decomposition (SVD) of A: 

0 A 
A† 0 

= 0 U V † 

V U † 0
= 1 2 

U −U 
V  V  

0 
0 − 

U † V † 

−U † V †

Pauli Basis and Decomposition 

One may always implement an oracle for a matrix A ∈ C2n×2 n by decomposing 
A in the Pauli basis. First, we note that any Hermitian matrix A ∈ C2× 2 may be 
represented as a linear combination of Pauli matrices, denoted as σx = X ,  σy = 
Y ,  σz = Z, and σI = I , where X , Y , Z and I are single-qubit gates as shown in 
Table 8, as 

A = α1σI + α2σx + α3σy + α 4σz

where αi ∈ C. This can be extended to a general matrix A ∈ C2 n as the sum 

A = 
1 

2n i1,i2,...,in 
αi1,i2,...,in σi1 ⊗ σi2 ⊗ .  .   . ⊗ σin

where αi1,i2,...,in ∈ C are the coefficients of A in the Pauli basis and σij ∈ 
{I , X , Y , Z} are the identity and Pauli matrices. The coefficients αi1,i2,...,in can be 
computed as 

αi1,i2,...,in = Tr A σi1 ⊗ σi2 ⊗ .  .  . ⊗ σin

where Tr(·) is the trace of a matrix, and denotes the Hadamard product (element-
wise multiplication) of the matrix entries. 

A term of the form σi1 ⊗ σi2 ⊗ .  .  . ⊗ σin is often referred to as a Pauli string 
and written as σi1 σi2 .  .  .  σ  in .
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Fig. 13.1 Growth in the number of Pauli terms for a sparse matrix 

The linear combination of unitaries (LCU) subroutine, described in Chap. 22, 
Linear Combination of unitaries, can be used to implement a linear combination 
of Pauli basis terms [9]. In fact, LCU implementations produce a block-encoded 
oracle [2, 5]. Although d Pauli basis terms produce at most a d -sparse matrix, i.e., 
a matrix with at most d non-zero entries in any row or column, a d -sparse matrix 
in general does not correspond to at most d Pauli basis terms [7]. We provide as 
an example a code below to decompose the Laplacian matrix into its Pauli basis 
and show the growth of the number of terms with N in Fig. 13.1. On the contrary, 
it is known that a Laplacian operator with various boundary conditions can be 
decomposed into O(1) unitaries with O n2 gates [15] instead of N = O(2n )
gates: 

#!/usr/bin/python3 

from itertools import product 

import numpy as np 

from qiskit.quantum_info import Operator 

from qiskit.circuit import library 

import matplotlib.pyplot as plt 

def pad_matrix(matrix): 

# Pad with 0 to make square matrix
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max_shape = max(matrix.shape[0], matrix.shape [1]) 

deficiency = int(np.power(2,np.ceil(np.log2(max_shape))) - max_ 

shape) 

if matrix.shape[0] != matrix.shape [1]: 

if matrix.shape[0] > matrix.shape [1]: 

pad_width = [(0, 0), (0, matrix.shape[0] - matrix.shape [1])] 

else: 

pad_width = [(0, matrix.shape [1] - matrix.shape[0]), (0, 0)] 

matrix = np.pad(matrix, pad_width)
matrix = np.pad(matrix,[(0,deficiency),(0,deficiency)])

return matrix

def decompose_pauli(matrix): 

matrix = pad_matrix(matrix) 
matrix_len = matrix.shape[0] 
nqubits = int(np.log2(matrix_len))

pauli = { 
’x’: Operator(library.XGate().to_matrix()), 

’y’: Operator(library.YGate().to_matrix()), 

’z’: Operator(library.ZGate().to_matrix()), 

’i’: Operator(library.IGate().to_matrix()) 

}

decomposition = {} 
for permutation in product(*[list(pauli.keys())]*nqubits): 

permutation = "".join(permutation) 
base_matrix = pauli[permutation[0]] 
for idx in range(1, len(permutation)): 

base_matrix = base_matrix.tensor(pauli[permutation[idx]]) 
decomposition_component= np.trace(np.dot(base_matrix, matrix)) / 

matrix_len 

if 0!=decomposition_component: 

decomposition[permutation] = decomposition_component 
return decomposition 

max_n = 8 
N = [2**n for n in range(1,max_n)] 

sparsity = [len(decompose_pauli(2*np.eye(2**n)
- np.diag(np.ones(2**n-1),-1)

- np.diag(np.ones(2**n-1),1))) for n in range(1,max_n)]

plt.plot(N,sparsity)
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plt.xlabel(’N’) 

plt.ylabel(’Pauli Terms’) 

plt.title(’Sparsity in Pauli Basis of NxN Laplacian’) 

plt.show() 

The implementation of efficient oracles for practically relevant problems is an 
active area of research [7, 13]. An example of a circuit using a sparse matrix 
access model to encode U ≈ eiA where A = 

j 
A j is a tridiagonal Toeplitz matrix 

decomposed as a sum of 1-sparse matrices Aj that can be found in [8–10] provide 
access models for discrete Laplacian matrices. 
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14Limitations of Quantum Computers 

Quantum physics places some fundamental limits on possible operations using 
quantum computing. A well-known limitation is the no-cloning theorem [1], which 
states that an arbitrary quantum state cannot be used to make an exact, independent 
copy of itself. More precisely, the map U |φ ψ eiα|ψ ψ is not possible in 
general for arbitrary |ψ C

n, |φ C
n where U ∈ C2 n. 

The no-deletion theorem complements the no-cloning theorem, which prohibits 
information in a quantum state from being erased (using unitary operations). Note 
that imperfect copies are still possible to create, with known bounds on the error 
[2–4], or perfect copies can be made if the quantum state is fully known. 

The normalization of a state and the periodicity of phase can also be considered 
limitations on the state. All gate operations are unitary and linear. To apply non-
unitary and nonlinear operations, a projection onto a subspace of the overall linear 
space must be considered. This is the central idea behind block-encoding. This 
property is exploited in various quantum computing algorithms, at the expense of 
ancilla qubits and a non-zero probability of failure [5]. 

Amplifying the probability of a desirable quantum state among a superposition 
of undesirable states can also pose a challenging limitation. If the amplitude of 
the desired state is exponentially small, the probability of obtaining the desired 
state cannot be boosted without an exponential overhead [6]. This is known as the 
post-selection problem [7]. 

Getting data in and out of a quantum register is also a challenging problem. I/O 
is expensive on quantum computers: preparing or reading out an arbitrary quantum 
state scales as O(2n). Furthermore, reading out a quantum state with the phases 
requires quantum state tomography [8]. The quantum version of random-access 
memory, QRAM, has been proposed to access and store classical data on quantum 
computers efficiently and is an active area of research [9].
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124 14 Limitations of Quantum Computers

Some problems have been proven to exhibit no quantum speedup compared 
to classical computing. A well-known result is the quantum no-fast-forwarding 
theorem [10] which states that the optimal scaling for an arbitrary Hamiltonian 
simulation for time T is O(T ), in the worst case. The standard proxy for this 
proof is the parity problem: given oracle access to a string of N bits, comput-
ing the parity classically requires N queries, while the optimal quantum algorithm 
achieves no better than N /2 queries [11]. Thus, no exponential or even superpoly-
nomial quantum advantage is possible for this task. However, for specific classes 
of Hamiltonians—such as certain positive-definite or structured systems, sublinear 
time evolution via fast-forwarding is possible [5]. 

Computing expectation values of observables is a fundamental subroutine in 
many quantum algorithms. Given a quantum state |ψ and an observable O, the 
goal is to estimate Oψ ψ |O|ψ to within additive precision . In general, the 
number of measurements required to achieve standard deviation ϵ scales O 1 2 , 
due to statistical sampling. However, using quantum phase estimation or related 
techniques, this can be improved to the so-called Heisenberg limit, where the cost 
scales as O(1 ). 

Despite these limitations, there is potential for quantum computing to make an 
impact on scientific computation and engineering problems. Classical computers 
and algorithms are simply not capable of storing and processing large quantum 
simulations, making quantum computers the only viable option for general quan-
tum simulation problems [12] despite the no-fast-forwarding theorem. Algorithms 
typically need to be modified to be amenable to quantum computing. For example, 
[13] uses a Carleman linearization of a nonlinear ordinary differential equation to 
obtain an exponential speedup in the number of unknowns, and [14] presents a 
novel data encoding scheme for the efficient implementation of a quantum lattice 
Boltzmann method. 

There exist many other no-go theorems for quantum computing. It is important 
to be mindful of these results when developing algorithms to remain within the 
confines of what is physically computable, since any computer we can build must 
follow the laws of physics. 
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15Simon’s, Deutsch–Jozsa, 
and Bernstein–Vazirani Algorithms 

In this chapter, we introduce three abstract computational problems to demonstrate 
a clear advantage of quantum computers over classical computers in a black-box 
setting. 

Although these algorithms do not have any known applied utility, they distin-
guish the complexity classes of quantum computers. At the end of this chapter, we 
will touch upon the Hidden subgroup problem, demonstrating how it is a stencil 
for exponential quantum speedups with an example. 

In this chapter, we will make extensive use of the following identity to represent 
Hadamard gates on n qubits: 

H ⊗n = 
x∈{0,1}n

|ψx x |

|ψx 
1 √
2n x∈{0,1}n 

(−1)x·y|y 

where x · y is a binary inner product x · y = x0y0 + x1y1 + .  .  .  + xn−1yn−1. 
Applying this identity to a basis state |i yields 

H ⊗n|i = 2− n
2 
2n−1 

j=0 
(−1)i·j|j 

Deutsch–Jozsa Algorithm 

The Deutsch–Jozsa algorithm [1] demonstrates an exponential speedup over 
classical computing. The computational problem to be solved is defined as follows:
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Given a black-box procedure (a.k.a. oracle) that implements a function mapping, 
a binary string of length n to a Boolean value 

f : {0, 1}n → {0 , 1}

s.t. f is known to be constant: 

f (b) = 1 or f (b) = 0 ∀ b ∈ { 0, 1}n

or balanced: 

f (b) = 0 ∀ b1 
1 ∀ b2

where b1 ∩ b2 = ∅, b1 ∪ b2 = {0, 1 }n, and |b1| = |b2| = 2n−1. 
Determine whether f is constant or balanced. 
On a classical computer, this algorithm requires 2n−1+1 evaluations of f (oracle 

queries) in the worst case. 
A quantum oracle for f requires it to be reversible. As explained in Chap. 12, 

Classical and Reversible Computation, we can assume access to an oracle of the 
form shown in Fig. 15.1. 

To solve this problem using a quantum computer, we take advantage of quantum 
parallelism by preparing a superposition of inputs. The problem can be solved by 
executing the following circuit in Fig. 15.2. 

There are several methods to derive the proof of this algorithm. In the proof 
that follows, we use an orthogonality argument. Tracing the steps of this circuit:

|ψ1 I⊗n ⊗ (HX ) |0 ⊗n|0

Fig. 15.1 Quantum oracle 
for f 

Fig. 15.2 Quantum circuit 
for the Deutsch–Jozsa 
algorithm 
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= 
1 √
2 
|0 ⊗n (|0 − |1 ) = |0 ⊗n|0

Note that we have effectively transformed Uf into a phase oracle, i.e., 

Uf |x − = (−1)f (x)|x −

We will now evaluate f for all possible inputs x ∈ {0, 1}n using a superposition 
state (using the identity for Hadamard gates provided earlier): 

|ψ2 H ⊗n ⊗ I |ψ1 2− n
2 
2n−1 

i=0 
|i − 

The quantum oracle Uf is now applied to this superposition of all possible 
inputs 

|ψ3 2− n 
2 
2n−1 

i=0 
(−1)f (i)|i − 

Now consider the two cases when f is constant: 

f (i) = 1 ∴ (−1)f (i) =  −1 
0 ∴ (−1)f ( i) = 1

∀ i

Therefore, for the constant case, we can equivalently write 

|ψ3 (−1)f (0)2− n 
2 
2n−1 

i=0 
|i − 

which is simply an overall phase. Proceeding further with the constant case, 
applying Hadamard gates to the first register now yields 

|ψ4 (−1)f (0)|0 ⊗n|− 

Therefore, for the constant case, all the bits in the first register must equal 
zero. To complete the proof, we now need to show that this does not hold for the 
balanced case. 

Now let’s return to the state |ψ3 

|ψ3 2− n 
2 
2n−1 

i=0 
(−1)f (i)|i − 

Let’s measure the overlap of this state between the constant and balanced cases, 
i.e., 

ψconstant 
3 |ψbalanced 

3 = (−1)f (0)2− n
2 
2n−1 

i=0 
i −| 2− n 

2 
2n−1 

j=0 
(−1)f (j)|j −
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= (−1)f (0)2−n 2n−1 

i=0 
i| 2n−1 

j=0 
(−1)f (j)|j 

= (−1)f (0)2−n 2
n−1 

i=0 

2n−1 

j=0 
(−1)f (j) i|j 

= (−1)f (0)2−n 2
n−1 

j=0 
(−1)f (j) j|j 

= (−1)f (0)2−n 2
n−1 

j=0 
(− 1)f (j)

Since f (j) is balanced, 
2n−1 

j=0 
(−1)f (j) = 0. Therefore, 

ψconstant 
3 |ψbalanced 

3 = 0 

implying that ψconstant 
3 ⊥ ψbalanced 

3 . 
Since ψconstant 

3 is orthogonal to ψbalanced 
3 , they will remain orthogonal if any 

unitary transformation is applied to both states, i.e., 

U ψconstant 
3 ⊥U ψbalanced 

3 ∀ U ∈ U 2 n

Since the transformation from |ψ3 |ψ4 is unitary, i.e., H ⊗n ⊗ I , 

ψconstant 
4 ⊥ ψbalanced 

4 

Since we have already established that the state ψconstant 
4 = |0 ⊗n|− up to an 

overall phase: 

|0 ⊗n⊥ ψbalanced 
4 

therefore, for the balanced case, a measurement of the first register cannot yield 
all zeros. 

To summarize, executing the circuit shown in Fig. 15.1 and measuring the first 
register solves the Deutsch–Jozsa problem. Measuring any qubit in a non-zero state 
indicates that the function is balanced, and measuring all qubits in the first register 
in the zero state indicates that the function is constant. 

Since this procedure requires only one query to an oracle, this demonstrates an 
exponential improvement in query complexity over any classical method for this 
problem.
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Bernstein–Vazirani Problem 

The Bernstein–Vazirani algorithm [2] is designed to discover a string hidden in 
a function. The Bernstein–Vazirani algorithm demonstrates a linear (polynomial) 
speedup over classical query complexity. 

Problem statement: 
Given f : {0, 1}n → {0, 1} and a secret string s ∈ {0, 1 }n, f (x) = 

parity(AND(x, s)). Determine s. 
f (x) can alternatively be defined as a bitwise dot product between x and s 

modulo 2: 

f (x) = x · s = x0s0 ⊕ x1s1 ⊕ .  .  .  ⊕ xn−1sn−1 = mod 2
n−1

i=0
xisi

s can be determined classically one bit at a time by querying f using the following 
strings: 

si = f bin 2i ∀ i ∈ [0, n − 1]

which requires n queries to a classical oracle of f to determine all bits of s. 
Given access to f as a quantum oracle Uf , the string s may be determined using 

one query to Uf , indicating a linear speedup over classical query complexity. 
To determine s using a quantum procedure similar to the Deutsch–Jozsa 

problem, we assume access to a quantum oracle of the form: 

Uf |x b x b ⊕ f (x) .

and using the same technique employed for the Deutsch–Jozsa algorithm, we 
transform this oracle into a phase oracle by choosing |b : 

Uf |x (−1)f (x)|x 

The circuit for solving this problem is similar to that for the Deutsch–Jozsa 
problem and is shown in Fig. 15.3. 

Tracing this algorithm step-by-step, we get

|ψ1 I⊗n ⊗ HX |0 ⊗n|0 = |0 ⊗n|−

Fig. 15.3 Quantum circuit to 
solve the Bernstein–Vazirani 
problem 
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|ψ2 2− n 
2 
2n−1 

i=0 
|i − 

|ψ3 2− n
2 
2n−1 

i=0 
(−1)f (i)|i −

By definition of f (i) we get 

|ψ3 2− n 
2 
2n−1 

i=0 
(−1)i·s|i − 

In the next step we use the identity: 

H ⊗n|i = 2− n
2 
2n−1 

j=0 
(−1)i·j|j 

where |i , |j ∈ C2n are standard basis states. 
Applying the final Hadamard gates, we get 

|ψ4 2− n 
2 
2n−1 

i=0 
(−1)i·s H ⊗n|i |− 

= 2 −
n
2 
2n−1 

i=0 
(−1)i·s 2− n 

2 
2n−1 

j=0 
(−1)i·j|j |− 

= 2−n 2
n−1 

i=0 

2n−1 

j=0 
(−1)i·s (−1)i·j|j − 

We now use the following identities: 

(−1)i·s (−1)i·j = (−1)(i·s)⊕(i·j) = (−1)i·(s ⊕j)

where ⊕ indicates a bitwise XOR operation, to arrive at 

|ψ4 2−n 2
n−1 

i=0 

2n−1 

j=0 
(−1)i·(s⊕j)|j − 

Now we can compute the probability amplitude of the state |s − by choosing 
j = s. First, we note that s ⊕ s = 0. Furthermore, i · 0 = 0. Therefore, we can now 
simplify 

|ψ4 2−n 2
n−1 

i=0 
(−1)0|s − 

|ψ4 2−n 2
n−1 

i=0 
|s − 

|ψ4 |s −
and see that the probability amplitude of |s is 1. Therefore, using a completeness 
argument, we know that all other states must have a probability amplitude of 0. 
We can conclude that measuring the first register will directly yield the string s.
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Simon’s Problem 

Simon’s problem [3] is similar to the Bernstein–Vazirani problem; however, it 
demonstrates an exponential speedup over classical computing. There are several 
variants of Simon’s problem, stated as follows. We will attempt to combine all 
these (equivalent variants). 

We provide two equivalent statements of the problem as Variant 1a and Variant 
2a. If the problem asks for an additional output, we provide Variant 1b and Variant 
2b as equivalent extensions of the problem. 

Variant 1a (decision problem): 
Given f : {0, 1}n → {0, 1}n and s, x, y ∈ {0, 1}n s.t. ∀ x, y
f (x) = f (y) iff y = x ⊕ s. 
Determine whether s = 0 n or s 0n. 
Variant 1b: 
Given s 0n, find s. 
Variant 2a (decision problem): 
Given f : {0, 1}n → {0, 1}n and s, x, y ∈ {0, 1}n s.t. ∀ x, y
f (x) = f (y) iff y = x ⊕ s. 
Determine whether f is a 1 − 1 or 2 − 1 function. 
Variant 2b: 
If f is a 2 − 1 function, determine the secret string s. 
One deterministic classical algorithm to solve Simon’s problem is to query f (x) 

for at most 2n−1 distinct values of x ∈ {0, 1 }n. If there is a “collision,” i.e., f (x) = 
f (y), it will necessarily be apparent by comparing all the computed strings f (x), 
solving Variants 1a and 2a of the problem. 

Variants 1b and 2b can also be solved by simply using the colliding pair of 
inputs x, y and computing x ⊕ y = x ⊕ x ⊕ s = 0n ⊕ s = s. Therefore, the worst-
case scenario of this algorithm is 2n−1 + 1 queries of f (x) to solve all variants of 
the problem. 

This problem may also be solved using a probabilistic classical algorithm utiliz-
ing the “Birthday Paradox.” The lower bound for a randomized classical algorithm 

requires O 2 
n 
2 queries of f (x). In either case, the classical query complexity is 

known to scale exponentially with the length of the string. 
If f (x) is provided as a quantum oracle Uf of the form 

Uf |x 0 ⊗n = |x f (x) 

this problem may be solved with O(n) queries to Uf and O n3 classical post-
processing steps, indicating an exponential speedup. The quantum circuit for 
solving this problem is shown in Fig. 15.4.

Let’s trace the quantum states of this algorithm as labeled in Fig. 15.4. Using 
the identity for the Hadamard gate 

|ψ1 (H ⊗ I)|0 ⊗n|0 ⊗n = 2 −
n
2 
2n−1 

i=0 
|i 0 ⊗n
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Fig. 15.4 Quantum circuit 
for solving Simon’s problem

Using the definition of Uf Uf 

|ψ2 Uf 2
− n 

2 
2n−1 

i=0 
|i 0 ⊗n = 2− n

2 
2n−1 

i=0 
|i f (i) 

At this point, let’s analyze |ψ2 before proceeding further. Consider a mea-
surement of the second register. Measuring a bitstring f (j) in the second register 
implies that the overall system can be in either of the following two states: 

1 √
2 
(|j + |j ⊕ s )|f (j) if s 0n 

|j f (j) if s = 0n

Let’s proceed with the case s 0n. We may now rewrite |ψ2 as 

|ψ2 2− n+1 
2 

2n−1 

i=0 
(|i + |i ⊕ s )|f (i )

We now apply the final Hadamard gates and use the identity 

H ⊗n|i = 2− n
2 
2n−1 

j=0 
(−1)i·j|j 

We can now simply drop the second register as a “don’t care” term and apply 
the Hadamard gates to obtain 

H ⊗n ⊗ I 2− n+ 1
2 

2n−1 

i=0 
(|i + |i ⊕ s )|f (i) 

= 2− n+1
2 

2n−1 

i=0 
2− n 

2 
2n−1 

j=0 
(−1)i·j|j + 2− n

2 
2n−1 

j=0 
(−1)(i⊕s)·j|j |f (i) 

= 2− n +1
2 

2n−1 

i=0 
2− n 

2 
2n−1 

j=0 
(−1)i·j|j + 2− n

2 
2n−1 

j=0 
(−1)i·j (−1)s·j|j |f (i) 

= 2− 2n +1
2 

2n−1 

i=0 

2n−1 

j=0 
(−1)i·j 1 + (−1)s·j |j f (i) 

Noting that 1 + (−1)s·j 0 only if s · j = 0, measuring the first register yields 
|j s.t. s · j = 0. This does not directly reveal s. However, by sampling n−1 linearly
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independent samples 
0 
j, 

1 
j,  .  .  .

n−2
j we can construct a homogeneous linear system 

problem of the form 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 
j 
0 

0 
j 
1 

· · ·  
0 
j 

n−1 
1 
j 
0 

1 
j 
1 

· · ·  
1 
j 

n−1 
... 

... 
. . . 

... 
n−2 
j0 

n−2 
j1 · · ·  

n−2 
jn−1 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎛ 

⎜⎜⎜⎝ 

s0 
s1 
... 

sn−1 

⎞ 

⎟⎟⎟⎠ 
=

⎛
⎜⎜⎜⎝
0
0
...

0

⎞
⎟⎟⎟⎠

The number of bitstrings that need to be sampled to obtain such linearly inde-
pendent bitstrings is O(n). This linear system can be solved for a non-trivial 
solution using O n3 floating-point operations on a classical computer to reveal 
the string s. 

Therefore, the overall complexity of Simon’s algorithm is O(n) quantum oracle 
access and O n3 classical computing operations, leading to a polynomial time 
solution. This demonstrates an exponential improvement in query complexity over 
classical methods for solving Simon’s problem. 

Hidden Subgroup Problem 

We note that Simon’s problem is an instance of a very particular type of problem 
known as an Abelian Hidden Subgroup Problem (HSP). We define the Abelian 
HSP below. 

Consider a finite group G : G × G → G and a subgroup H ⊂ G, i.e., H : H × 
H → H with a group operation . The group operation is Abelian (commutative) 
if gi gj = gj gi ∀ gi, gj ∈ G. 

Consider also a function on G as f : G → A, where A is a finite set. f is said 
to hide a subgroup H if 

f (gi) = f gj iff gi H = gj H . 
Abelian Hidden Subgroup Problem: Given oracle access to f and the members 

of a group G, find the subgroup H that is hidden by an Abelian group operation . 
We can now draw parallels to see how the problem is an instance of the HSP. 

The group G is formed by bitstrings {0, 1} n. The group operation ⊕ is Abelian. 
The finite set A also happens to be {0, 1}n . The hidden subgroup H is 0⊗n, s : 

gi ⊕ H = gi ⊕ 0⊗n, gi ⊕ s = {gi, gi ⊕ s} = {gi, s ⊕ gi}

Evaluating f on this left coset or right coset {gi, gi ⊕ s} = {gi, s ⊕ gi} yields 

f (gi) = f (gi ⊕ s)

which is the definition of f , i.e., f does indeed hide H by definition.
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Quantum computers are known to have an exponential speedup (polynomial 
time solution) over classical problems for the Abelian HSP. Whether the non-
Abelian version of this problem exhibits a similar speedup is an open problem. A 
prominent application is Shor’s algorithm [4], which reduces integer factorization 
and discrete logarithm to instances of the Abelian HSP over cyclic groups. This 
approach yields an exponential quantum speedup for these problems compared to 
all known classical algorithms. 

The three problems outlined in this chapter demonstrate the fundamentally dif-
ferent nature of quantum computing in contrast to classical computing. Although 
these problems themselves do not solve any applied problem in computing, they 
foreshadow the potential speedups that can be enabled by quantum computing and 
provide a separation of complexity classes for classical and quantum computers. 
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Part IV 

Programming Quantum Computers 

Having developed a foundational understanding of quantum computation and its 
theoretical building blocks, we now turn to the practical task of programming 
quantum computers. This part focuses on bridging theory and implementation, 
equipping readers with the tools to construct and run quantum circuits using a 
modern software framework. 

Chapter 16, “The Quantum Computing Stack”, introduces the conceptual struc-
ture shown in Fig. 63. It discusses hardware-level control, device-specific gate 
sets, dynamic circuit instructions, and the role of quantum assembly languages. It 
also provides an overview of error suppression, mitigation, and correction as they 
appear across the stack. 

Chapter 17, “Libraries for Quantum Computing”, surveys widely used frame-
works and libraries for quantum software development. The chapter includes tools 
for algorithm prototyping, simulation, classical preprocessing, and cloud-based 
execution, with an emphasis on Qiskit and supporting libraries.
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16The Quantum Computing Stack 

In this chapter, we provide a high-level overview of the programming stack for 
quantum computing, with examples of various libraries and implementations and 
brief expositions of strategies for dealing with noise and errors. We first provide 
an overview of the quantum computer programming stack for gate-based quantum 
computers in Fig. 16.1. We then explain the components of the stack and their 
relations and techniques to manage errors and noise in quantum hardware.

We start our discussion from the bottom of the stack and move upwards. 
The hardware-level controls are specific to the particular implementation of the 
quantum computers. For superconducting qubits, this is typically the control and 
shaping of microwave pulses to apply quantum gates and perform measurements 
[1]. For a photonic quantum computer, this can be an implementation of a phase 
shifter or a beam splitter [2]. This typically requires detailed knowledge of the 
physics of hardware implementation. Hardware vendors may provide access to 
these low-level controls. Quantum circuits allow the abstraction of these details up 
to at least the hardware gate set provided by vendors. 

The device-specific code encompasses the hardware gate set, measurements, 
and dynamic circuit instructions. Measurements may either be raw samples or 
expectation values constructed from an ensemble of Pauli strings. The hard-
ware gate set combined with measurements may be considered as the classical 
equivalent of an instruction set. 

Dynamic circuit instructions are quantum instructions conditioned on qubit 
measurements (classical) within a quantum circuit that are executed at circuit run-
time. As an example, using dynamic circuits, if a qubit is measured as 0 during 
circuit execution, certain gates may be applied; otherwise, measuring 1 leads to 
other gates being applied. Since quantum devices have short coherence times, 
dynamic circuit instructions are typically executed on hardware close to the qubits 
to minimize execution time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
O. M. Raisuddin and S. De, Quantum Computing for Engineers, 
https://doi.org/10.1007/978-3-032-03325-3_16 

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_16&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_16


140 16 The Quantum Computing Stack

Fig. 16.1 Visualization of the quantum computing stack

Dynamic circuits can allow shortening of quantum circuits in various cases, 
with two examples being [3, 4]. Since these are more advanced features, they are 
outside the scope of this text. Error-correction codes rely on dynamic circuits to 
detect and correct errors on-the-fly. 

A quantum assembly language (QASM) is a bridge between device-specific 
code and the hardware-level implementation of the circuit. OpenQASM [5], 
cQASM [6], and Jaqal [7] are well-known examples of QASMs. OpenQASM is 
an open-source language developed by researchers at IBM and the most widely 
used one in libraries for quantum computing. 

A code describing a quantum circuit may be defined using an arbitrary set 
of gates, which can then be transpiled to code for a target device. In addition 
to converting to the gate set of the device, the topology of the device must also 
be considered since logical qubits in the quantum circuit need to be mapped to 
physical qubits (or a collection of physical qubits corresponding to a logical qubit) 
in the device. This process is typically executed by a high-level language or library 
and is referred to as a layout and routing for the tasks of mapping logical qubits 
to physical qubits, followed by routing operations such as SWAP gates to respect 
hardware connectivity constraints. 

Current quantum devices are in the Noisy Intermediate-Scale Quantum (NISQ) 
or “pre-fault-tolerant” era. The error rates and coherence times do not meet the 
threshold required for quantum error correction, and the total number of physical 
qubits is modest compared to the requirements of error-correcting codes. Quantum 
error correction is necessary for building fault-tolerant quantum computers which 
can execute arbitrary quantum algorithms. Details of a few contemporary quantum 
computing systems with published specifications are listed in Table 16.1. However, 
we emphasize that such specifications are not fully indicative of the capabilities of 
the device. As an example, trapped ion qubits have much longer coherence times 
compared to superconducting chips but the execution times for gates are typically
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Table 16.1 Published specifications of gate-based quantum computing hardware developed by 
major companies 

System Qubit count Coherence time (T1) Coherence time (T2) 

IBM Heron [8] 133–156 ~200 µs ~ 100 µs 
Google Willow [9] 105 ~68–100 µs – 

IonQ Forte [10] 30–36 ~10–100 s ~1 s 

Quantinuum H2-1 [11] 56 >60 s ~4 s 

longer too. As such, characterizing the performance of quantum computing sys-
tems is a nuanced and rapidly evolving subject. For present-day practitioners the 
critical metric is the maximum 2-qubit gate depth that can be executed on the 
device without significant error and noise accumulation. 

Finally, we note that quantum error correction, mitigation, and suppression can 
be part of various levels of the quantum computing stack. For classical comput-
ers, error correction and fault-tolerance typically occur at the bit level, e.g., voting 
circuits for logic, redundancy for memory, and parity for communications. In con-
trast, present-day strategies for dealing with errors for quantum computing range 
from preprocessing steps of the algorithm to hardware-level controls of individ-
ual qubits [12]. Error mitigation and suppression along with other techniques like 
reordering or optimizing circuits can occur at the quantum circuit or device-specific 
code levels [13]. Control hardware typically needs to be calibrated periodically to 
counteract noise and fabrication defects. While all these modalities are vast sub-
jects of research, we provide here a succinct typology to highlight the differences 
between the three major categories and provide examples of common techniques. 

Error Suppression 

Quantum error suppression generally refers to techniques for suppressing or reduc-
ing the accumulation of errors during the execution of a quantum circuit. While 
these techniques do not perform error correction, they are an indispensable tool to 
maximize the performance of NISQ devices. Some commonly used techniques 
with minimal overhead are dynamical decoupling, Pauli twirling, and twirled 
readout. 

Dynamical decoupling inserts periodic pulses (and their inverse) into idle por-
tions of a quantum circuit to decouple the quantum state from the environment. 
While this has no net effect in an ideal setting, in the presence of noise these 
sequences cancel out coupling with the environment in an average sense. This 
reduces errors and increases the coherence time of qubits. One may experiment 
with a variety of dynamical decoupling sequences to identify a sequence that works 
well for the circuit of interest. 

Pauli twirling inserts pseudo-random single-qubit Pauli gates into a circuit to 
convert coherent errors (systematic, unitary errors) into stochastic Pauli errors,
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which are easier to analyze and mitigate. Pauli twirling can also be applied to 
two-qubit gates. 

Twirled readout modifies the measurement process by flipping a qubit before 
measurement and then applying a classical NOT operation to the measured result. 
This effectively averages out certain types of readout bias. Twirling operations are 
typically inserted randomly in a circuit. 

Error Mitigation 

Quantum error mitigation techniques are used to improve expectation value esti-
mates by applying a combination of quantum circuit transformations and classical 
post-processing. The most commonly used technique for error mitigation is zero-
noise extrapolation (ZNE). The noise in a quantum circuit is “amplified,” and curve 
fit is used to extrapolate an expectation value to an amplification factor of zero, i.e., 
zero noise. Various methods can be used to amplify the noise in a circuit. Circuit 
folding amplifies noise by applying gates (or an entire circuit without measure-
ments) and their inverse. While circuit folding is a conceptually simple method 
to amplify noise, in practice the circuit depth of a folded circuit typically exceeds 
the viable circuit depth executable by NISQ hardware. Probabilistic error amplifi-
cation (PEA) is another common technique for amplifying the error and is better 
suited for current NISQ hardware. PEA learns the noise in a circuit and amplifies 
it by explicitly applying the learned noise model at different amplification levels 
in the circuit. Once expectation values are obtained at different noise amplification 
levels, a curve fit can be used to extrapolate to an amplification factor of zero. 
The choice of curve (e.g., linear or quadratic) to be fit to the pairs of expecta-
tion value and amplification ratio data points is typically chosen heuristically. For 
NISQ algorithms, techniques like ZNE are used at the quantum algorithm and pre-
and post-processing levels to reduce the effects of noise on measured observables 
[14]. 

Error Correction 

The prevalent method for constructing logical qubits for fault-tolerant quantum 
computing is centered around error-correction codes running on a multitude of 
physical qubits, which run at the device-specific code level. Error-correction codes 
utilize “syndrome” measurements. While direct measurement of a qubit will lead 
to the quantum state collapsing to the measured state, a syndrome measurement 
can be used to test whether two or more qubits have the same quantum state and 
test for errors without destroying the quantum state. By applying a sequence of 
syndrome measurements, one may then apply the necessary corrections to restore 
the quantum state. The theoretical models for error correction have been confirmed 
experimentally in several experiments [15–17].
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While error suppression and error mitigation are useful tools for NISQ devices, 
error correction is necessary for fault-tolerant quantum computing. Furthermore, 
the overheads for error mitigation scale exponentially in general for various tech-
niques, which is not a scalable approach towards any possible quantum advantage 
[18]. 

Error-corrected, a.k.a. fault-tolerant, quantum computers have not been devel-
oped yet. However, as hardware development is progressing, physical qubits 
may still provide useful results. To improve the performance of physical qubits, 
error suppression and error mitigation are employed. Error suppression and error 
mitigation may broadly be differentiated as techniques to reduce errors before 
measurement, and techniques to reduce the impact of errors after measurement. 
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17Libraries for Quantum Computing 

There are various high-level libraries developed for quantum computing, of which 
the vast majority are available in Python 3 and are open source. Currently, the 
most advanced and stable library suite is the open-source library Qiskit [1], devel-
oped by IBM. Google’s Cirq is a Python framework designed for NISQ devices, 
particularly those based on its Sycamore architecture [2]. While still evolving, it 
supports a range of algorithms and simulation tools. 

Microsoft has taken a different approach with Q# [3], a domain-specific lan-
guage for quantum computing, tightly integrated with the .NET ecosystem and 
optimized for hybrid quantum–classical workflows. Other notable libraries are 
Pennylane [4] and Strawberry Fields [5], developed by Xanadu for their pho-
tonic quantum computers, and PyQuil [6] for Rigetti’s superconducting qubit 
architecture. 

MATLAB has recently introduced a quantum computing toolbox for construct-
ing and simulating simple quantum circuits and simulating or submitting them 
to systems available through the cloud. However, it is in a nascent stage and 
does not offer the high-level functionality available in the Qiskit, Cirq, or Pen-
nylane libraries. The Berkeley Quantum Synthesis Toolkit (BQSkit), developed 
at Lawrence Berkeley National Laboratory, provides powerful tools for optimiz-
ing and synthesizing approximate quantum circuits. TKET is another open-source 
quantum software developer tool for building and compiling circuits to run on 
simulators or hardware. 

Several of the high-level libraries have built-in implementations of algorith-
mic primitives, e.g., the quantum Fourier transform or Trotterization. There are 
also additional libraries and wrappers for implementing algorithms in machine 
learning and quantum chemistry. TensorFlow Quantum serves as a wrapper that 
integrates Cirq with TensorFlow, enabling quantum machine learning and varia-
tional quantum algorithms. The Qiskit ecosystem includes specialized tools for
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quantum hardware design through the Qiskit Metal library [1] and software pack-
ages for chemistry and quantum physics simulations (Qiskit Nature), numerical 
methods (Qiskit Algorithms), and device characterization (Qiskit Experiments). 

There are several important libraries for the classical preprocessing steps for 
quantum computation. OpenFermion [7], PySCF [8], Qiskit, and Qiskit Nature can 
be used for quantum chemistry simulation preprocessing, e.g., for selecting basis 
sets for molecular structure calculations or implementations of Jordan–Wigner 
[9] or Bravyi–Kitaev [10] transformations. Quantum signal processing algorithms 
require a sequence of phase angles to be computed classically. The QSPPACK 
[11] and PyQSP [12] libraries are the only libraries for this task as of now, with 
QSPPACK providing superior performance and implementations of state-of-the-art 
algorithms for phase factor calculations. Since classical preprocessing libraries can 
vary widely by application area, it is beyond the scope of this book to provide a 
thorough review of these libraries. 

Quantum computers are typically accessed through the cloud. Several com-
mercial, academic, and government research groups have made their prototypes 
available either directly or through a third party. Notable commercial vendors are 
IBM, Google, IonQ, Honeywell, Xanadu, and Rigetti, with Amazon bra-ket and 
Microsoft Azure providing third-party cloud access. Quantum hardware testbeds 
have been available at Lawrence Berkeley National Laboratory (AQT). Sandia’s 
QSCOUT program has concluded, but insights from it continue to inform future 
quantum hardware control platforms. 

Given Qiskit’s comprehensive support across the quantum computing stack, its 
maturity, and its active development community, we adopt Qiskit as the primary 
library for programming quantum computers throughout this book. 
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Part V 

Algorithmic Primitives, Subroutines, 
and Frameworks 

This part introduces a core set of algorithmic building blocks that underpin 
many of the most powerful quantum algorithms. These primitives enable quan-
tum speedups for diverse classes of problems, including simulation, optimization, 
and machine learning. The chapters focus on both conceptual understanding and 
algorithmic structure, with an emphasis on modularity, reusability, and practical 
implementation. 

Chapter 18, “Phase Kickback”, illustrates how quantum circuits can encode 
classical information in the phase of a quantum state, a key mechanism underlying 
phase estimation and related techniques. 

Chapter 19, “Quantum Fourier Transform”, presents the quantum analog of the 
discrete Fourier transform and explains its role in many quantum algorithms, most 
notably Shor’s algorithm and quantum phase estimation. 

Chapter 20, “Quantum Phase Estimation”, builds on the previous two chapters 
to show how quantum algorithms can estimate eigenvalues of unitary operators. 

Chapter 21, “Trotterization”, introduces product formulas that approximate 
the time evolution of a quantum system—a fundamental technique in quantum 
simulation. 

Chapter 22, “Linear Combination of Unitaries (LCU)”, generalizes quantum 
operations using weighted combinations of unitary operators, enabling implemen-
tation of a broader class of linear transformations. 

Chapter 23, “Qubitization and Quantum Signal Processing”, introduces 
advanced techniques for operator transformations and polynomial approximations, 
which underpin modern simulation and linear algebra algorithms. 

Chapter 24, “Amplitude Amplification and Estimation”, introduces the ampli-
tude amplification subroutine and its application toward Quantum Amplitude 
Estimation, which are techniques offering quadratic speedups for probabilistic 
quantum algorithms. 

Chapter 25, “Quantum Monte Carlo”, presents quantum methods for statistical 
sampling and expectation estimation, leveraging amplitude estimation for reduced 
sample complexity. 

Chapter 26, “Matrix-Vector Multiplications and Affine Linear Operations”, dis-
cusses techniques for implementing linear algebraic operations in quantum circuits, 
including methods for sequences of matrix-vector operations and affine linear 
matrix-vector operations.

https://doi.org/10.1007/978-3-032-03325-3_18
https://doi.org/10.1007/978-3-032-03325-3_19
https://doi.org/10.1007/978-3-032-03325-3_20
https://doi.org/10.1007/978-3-032-03325-3_21
https://doi.org/10.1007/978-3-032-03325-3_22
https://doi.org/10.1007/978-3-032-03325-3_23
https://doi.org/10.1007/978-3-032-03325-3_24
https://doi.org/10.1007/978-3-032-03325-3_25
https://doi.org/10.1007/978-3-032-03325-3_26


150 Part V: Algorithmic Primitives, Subroutines, and Frameworks

These chapters form the algorithmic core that supports the quantum algorithms 
introduced in subsequent parts. Each is motivated by practical applications and 
illustrated with representative code where appropriate.



18Phase Kickback 

Phase kickback is a uniquely quantum phenomenon where the control qubit in 
a controlled operation accumulates a phase, whereas the target qubit remains 
unchanged. This is remarkably different from classical computing, where the 
control bits for logic gates always remain unchanged. 

When a controlled gate is applied and the target is in an eigenstate of the 
unitary being controlled, the corresponding eigenvalue can be “kicked back” to the 
phase of the control qubit [1]. This effect plays a central role in several quantum 
subroutines, including quantum phase estimation and the broader quantum signal 
processing framework. 

Consider a unitary operator U with eigenstates |λi and corresponding eigen-
values eiλi , such that 

U =
i 
eiλi |λi λi| 

The controlled version of U , denoted by cU , acts as 

cU = |0 0| ⊗ I + |1 1| ⊗ U

Now consider an input state 

|ψi 
1 √
2 
(|0 + |1 ) ⊗ | λi

where the first qubit is the control and the second is in the eigenstate of U . 
Applying cU yields 

cU |ψi 
1 √
2 

|0 + eiλi |1
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Thus, the target qubit remains unchanged, while the control qubit picks up a 
relative phase of eiλi , only for the |1 basis state of the control qubit. This is the 
essence of phase kickback. 

As an example, let’s investigate a controlled RZ gate. The RZ gate is defined in 
Qiskit as 

RZ (λ) = e− i λ
2 Z = e−i λ 

2 0 

0 ei 
λ 
2 

This is a diagonal unitary, so its eigenvectors are the computational basis states 
|0 and |1 . Note that other libraries have different, albeit similar, definitions for 
RZ gates. 

A controlled version, cRZ has the form: 

cRZ (λ) = |0 0| ⊗ I + |1 1| ⊗ RZ (λ)

which can be expanded in Dirac notation as 

cRZ (λ) = (|0 0| ⊗ I + |1 1|) ⊗ e−i λ
2 |0 0| + e i

λ
2 |1 1| 

We examine two cases to illustrate phase kickback: 
Case 1: The input is 1 √

2 
(|0 + |1 ) ⊗ | 0 . 

Applying cRZ (λ), we get 1 √
2 

|0 + e−i λ2 |1 |0 . 
Case 2: The input is 1 √

2 
(|0 + |1 )|1 . 

The output is 1 √
2 

|0 + ei 
λ
2 |1 |1 . 

The following code simulates these two cases and plots the real and imaginary 
parts of the probability amplitudes of each basis state for λ ∈ [0, 2π] in Fig. 18.1:

#!/usr/bin/python3 

import numpy as np 

from matplotlib import pyplot as plt 

from qiskit import QuantumCircuit 

from qiskit.circuit import Parameter 

from qiskit_aer import StatevectorSimulator 

# Create parameter lambda 

Lambda = Parameter("lambda") 

# Create Circuits for the two cases 

circ1 = QuantumCircuit(2)
circ1.h(0)
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Fig. 18.1 Phase kickback for Left: cRZ (λ) applied to the quantum state 1 √
2 
(|0 + |1 )|0 ; Right: 

cRZ (λ) applied to the quantum state 1 √
2 
(|0 + |1 )|1 . The y-axis indicates the probability ampli-

tudes for each basis state (real and imaginary parts shown separately)

circ1.crz(Lambda,0,1) 

circ2 = QuantumCircuit(2) 
circ2.x(1) # Initialize second qubit in state |1> 

circ2.h(0)

circ2.crz(Lambda,0,1)
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# Obtain statevectors of the end results for various parameter val-

ues 

simulator = StatevectorSimulator() 
lambdas = np.linspace(0,np.pi*2,100) 
case_1_statevectors = np.array([simulator.run(circ1.reverse_ 

bits().assign_parameters({"lambda":_lambda})).result().get_ 

statevector() for _lambda in lambdas]) 

case_2_statevectors = np.array([simulator.run(circ2.reverse_ 

bits().assign_parameters({"lambda":_lambda})).result().get_ 

statevector() for _lambda in lambdas]) 

# Plot real and imaginary parts of basis states 

plt.rcParams[’text.usetex’] = True 
fig, axs = plt.subplots(4,2,sharex=True, sharey=True) 

for _i in range(4): 

axs[_i,0].plot(lambdas, case_1_statevectors[:,_i].real, ’k-’) 

axs[_i,0].plot(lambdas, case_1_statevectors[:,_i].imag, ’r--’) 

axs[_i,1].plot(lambdas, case_2_statevectors[:,_i].real, ’k-’) 

axs[_i,1].plot(lambdas, case_2_statevectors[:,_i].imag, ’r--’) 

axs[0,0].set_xlim(0,np.pi*2) 

axs[0,0].set_ylim(-1,1) 

axs[3,0].set_xlabel(r"$ \lambda $") 

axs[3,1].set_xlabel(r"$ \lambda $") 

axs[0,1].legend(["Re", "Im"]) 

axs[0,0].set_ylabel(r"$| 00 \rangle$") 

axs[1,0].set_ylabel(r"$| 01 \rangle$") 

axs[2,0].set_ylabel(r"$| 10 \rangle$") 

axs[3,0].set_ylabel(r"$| 11 \rangle$") 

axs[0,0].set_title(r"$ \frac{1}{\sqrt{2}} ( | 0 \rangle + | 1 \ran-

gle ) | 0 \rangle $") 

axs[0,1].set_title(r"$ \frac{1}{\sqrt{2}} ( | 0 \rangle + | 1 \ran-

gle ) | 1 \rangle $")

plt.show()

We see that the basis states |0∗ do not change with lambda, while basis states 
|1∗ pick up a phase of e−i λ 

2 and ei 
λ 
2 in the left and right plots, respectively. 

Reference 

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary 
Edition, 1st edn. (Cambridge University Press, 2012). https://doi.org/10.1017/CBO978051197 
6667
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19Quantum Fourier Transform 

The Quantum Fourier Transform (QFT) is the quantum analog of the classical 
Discrete Fourier Transform (DFT) [1], and it plays a central role in several quan-
tum algorithms, including Shor’s factoring algorithm, quantum phase estimation, 
and quantum signal processing. Unlike the classical DFT, which requires O(n2n) 
operations and O(2n) memory to act on a 2n-dimensional vector, the QFT can 
be implemented on an n-qubit quantum computer using only O n2 gates (or 
even O(n log n) gates with approximation). The QFT transforms the probability 
amplitudes of quantum states into the Fourier basis, enabling interference-based 
speedups that are classically intractable. 

Formally, given a quantum state |ψ expressed in the computational basis: 

|ψ = 
N −1 

j = 0 
ψj|j , where N = 2n.

the quantum Fourier transform is the unitary operation FN defined by its action 
on the computational basis states: 

FN |j = 
1 √
N 

N −1 

k=0 
e2π ij/N |k 

Applying FN to |ψ yields the transformed state: 

|φ = FN |ψ = 
N −1 

k=0 

φk |k
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where the amplitudes φk are the discrete Fourier transform of the original 
amplitudes ψj : 

φk = 
1 √
N 

N −1 

j=0 

ψje
2π ijk/ N

To derive a more efficient quantum implementation, we consider the product 
form of the QFT using the binary representation of indices. For N = 2 n, where 
n ∈ Z+, the basis states |j ∈ {|0 , ..., |2n − 1 may be relabeled using the binary 
notation of the integers j as follows: 

j = j12−1 + j22n−2 +  · · ·  +  jn20 :→ j 1j2 . . . jn

Similarly, the binary fraction is denoted as 

jl/2 + jl + 1/4 +  · · ·  +  jm/2m−l+1 :→ 0 · j l jl+1 . . . jm

Using this notation, the QFT of a basis state |j = |j1j2...jn may be written as 
a product state 

FN |j = 
1 

2n/2 
|0 + e0.jn |1 |0 + e0.jnjn−1 |1 .  .  .  |0 + e0.j1j 2...jn |1

This decomposition reveals that the QFT can be constructed using a sequence 
of Hadamard and controlled-phase gates and requires only O n2 operations. 

We provide as an example a Qiskit implementation of a quantum Fourier trans-
form on a uniform superposition of basis states. A uniform superposition of qubits 

corresponds to an amplitude encoding of a vector of 1’s, i.e., | = 1√
N 

2n−1 

k=0 
|k , 

shown as the “before” state in Fig. 1.14, which corresponds to the 0th frequency 
component in the Fourier basis. Performing a quantum Fourier transform on | 
yields a quantum state | = FN | , an amplitude encoding of the Fourier trans-
form of the probability amplitudes of | . Measuring the qubits after the quantum 
Fourier transform on | yields the quantum state | = |00 .  .  . 0 , the basis state 
corresponding to the 0th frequency component as expected, shown in Fig. 19.1 as 
the “after” state:

#!/usr/bin/python3 

from matplotlib import pyplot as plt 

from qiskit import QuantumCircuit 

from qiskit.circuit.library import QFT 

from qiskit_aer.primitives import SamplerV2 

from qiskit.visualization import plot_histogram
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Fig. 19.1 Left: Uniform superposition state to which QFT is applied. Right: Output of QFT; a 
single basis state

beforeFT = QuantumCircuit(5) 
# Initialize state in uniform superposition 

beforeFT.h([0,1,2,3,4]) 

# Measure all qubits 

beforeFT.measure_all() 

afterFT = QuantumCircuit(5) 
# Initialize qubits 

afterFT.h([0,1,2,3,4]) 

# Add Fourier transform operation 

qft = QFT(num_qubits=5,do_swaps=False).to_gate() 
afterFT.append(qft, qargs=[0,1,2,3,4]) 

# Measure all qubits 

afterFT.measure_all() 

# Decompose Fourier transform operation into gates for simulator 

afterFT = afterFT.decompose(reps=2) 

# Simulate the circuit 

# Simulate the circuit 

sampler = SamplerV2() 
job = sampler.run([beforeFT,afterFT],shots=2**20) 
result_before = job.result()[0].data.meas.get_counts() 
result_after = job.result()[1].data.meas.get_counts() 

# Plot a bar chart of all the results
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plot_histogram(result_before,bar_labels=False,title=’Before 

QFT’) 

plot_histogram(result_after,bar_labels=False,title=’After QFT’) 

plt.show() 

Reference 

1. C. Coppersmith, An approximate Fourier transform useful in quantum factoring. IBM Research 
Division, RC 19642 (1994). https://doi.org/10.48550/arXiv.quant-ph/0201067

https://doi.org/10.48550/arXiv.quant-ph/0201067


20Quantum Phase Estimation 

Quantum phase estimation (QPE) is a core subroutine in many quantum algo-
rithms, including Shor’s factoring algorithm and expectation value estimation. It 
provides a way to estimate the eigenvalue associated with a known eigenstate 
of a unitary operator. At the heart of QPE lies the phenomenon of phase kick-
back, and the quantum Fourier transform is used to extract the encoded phase 
information. The algorithm demonstrates one of the key strengths of quantum com-
puting—efficient extraction of global properties (like eigenvalues) from unitary 
dynamics. 

Given an eigenstate |λi of a unitary operator U , quantum phase estimation 
provides an estimate of the corresponding eigenvalue ei2π  λ  i . Phase estimation uses 
the quantum Fourier transform to extract the phase kicked back by a sequence 
of controlled unitary operations. A series of powers of U , each controlled by a 
distinct qubit in the clock register, is applied to the eigenstate in the work register. 
Figure 20.1 shows an example circuit with four control qubits. The control qubits 
are initialized in uniform superposition before applying the controlled operations. 
More specifically, the j  t  h control qubit applies the unitary U 2

j 
to the work register.

Let us first assume that λi can be expressed exactly as a J -bit binary fraction 

λi = 0. j1j2 .  .  .  jJ

Denoting cjU 2
j 
as the controlled-U 2

j 
operations (controlled by the jth qubit in the 

clock register), the application of the gates on the state: 

1 

2 
J−1 
2 

(|0 + |1 )⊗J −1 ⊗ |ψ
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Fig. 20.1 Circuit for 
quantum phase estimation

yields, via phase kickback: 

J−1 

j=0 
cjU 

2j ( 
1 

2 
J−1 
2 

(|0 + |1 )⊗J−1|ψ ) 

= 1

2 
J−1 
2 

J −1 ⊗
j=0 

|0 + eiλi2
j |ψ 

= 
1

2 
J−1 
2 

2J−1−1 

k=0 

eik2π  λi |k λ m

where |k ranges over computational basis states of the clock register. 
Performing the inverse quantum Fourier transform on the clock register trans-

forms this state into a computational basis state encoding the phase λi, resulting 
in |λi being sampled with a probability of 1. Note that since ei2π  λ  i is periodic, 
|λi will be measured such that 0 ≤ λi ≤ 1. 

Now consider the case where λi is not exactly expressible as a J -bit binary 
fraction, i.e., its closest binary fraction approximation is λi such that. 

λi > λi and 0 ≤ λi − λ i ≤ δ

Performing phase estimation for this case will not yield a unique λi . Rather, 
we will get a probability distribution of sampling various states |0. j1j2 .  .  . jJ . 

To sample a state from the clock register to obtain λi up to m-bits of accuracy, 

i.e., |λi − 0. j1j2 .  .  .  jm| = λi − 
m 

λi ≤ 1
2m , we can choose 

J = m + log 2 + 1

2 

To achieve a success probability of p λi − 
m 

λi ≤ 1
2m ≥ 1 − . 

However, the state |λi may not be available or may not be efficiently prepared. 
In this case, an approximation λi ≈ |λi may be used instead. Expanding this 
approximation as 

λi = 
i 
ci|λi
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it can be shown that the probability of measuring λi is at least 

p λi = |ci|2(1 − )

Here, it must be assumed that λi has sufficient overlap with λi , i.e., λi|λl does 
not decay exponentially with the number of qubits in the work register. Putting 
together these results, the complexity of estimating eigenvalues up to a precision 
using quantum phase estimation has an overall complexity of O(1 ) and has a 

circuit illustrated in Fig. 20.1. 
The standard implementation of the phase estimation algorithm requires J 

ancilla qubits. A more efficient implementation is the iterative phase estimation 
algorithm, which requires a single ancilla qubit and mid-circuit measurements to 
perform phase estimation [1]. 

We provide the code below to estimate an eigenvalue of the following unitary: 

U (φ) = e2π iφZ = e2π iφ 0 
0 e−2π iφ

U (φ) has an eigenvector |0 with an eigenvalue e2π i φ . When quantum phase 
estimation is applied to this eigenvector, we expect to measure φ̃ with high prob-
ability. We implement this in the following code for various values of −1.5 ≤ 
φ ≤ 1.5 using 4, 12, and 16 ancilla qubits to demonstrate the behavior of quantum 
phase estimation and its periodicity, i.e., φ̃ ≈ φ modulo 1 in Fig. 20.2:

#!/usr/bin/python3 

import numpy as np 

from qiskit.circuit.library import PhaseEstimation 

from qiskit.circuit.library import RZGate 

from qiskit.primitives import StatevectorSampler 

from matplotlib import pyplot as plt 

min_ancillae = 8 
max_ancillae = 17 
step = 4 
ancillae = range(min_ancillae,max_ancillae,step) 

phi = np.arange(-1.5,1.,0.01).round(3) 

phi_measured = np.zeros((len(ancillae),len(phi)))
errors = np.zeros((len(ancillae),len(phi)))

mysampler = StatevectorSampler()
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Fig. 20.2 Top: Quantum phase estimation for phi in the range. Bottom: Adjusted plot to account 
for periodicity of φ. Adding 4 qubits to the clock register leads to an effective increase in one digit 
of precision in the quantum phase estimation of φ
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for i, m in enumerate(ancillae): 

for j in range(len(phi)): 

myunitary = RZGate(-4*np.pi*phi[j]) 
myqpe = PhaseEstimation(m,myunitary) 
myqpe.measure_all() 

pub = (myqpe) 
job = mysampler.run([(pub)],shots=1_00_000) 
result = job.result()[0] 
raw = result.data[’meas’] 
counts = raw.get_counts() 
maxkey = max(counts, key=counts.get) 

# Compute and store the measured value of QPE 

phi_measured[i,j] = 0 
for _i, bit in enumerate(reversed(maxkey)): 

if bit==’1’: 

phi_measured[i,j] += 1/(2**(_i+1)) 
# Store the errors 

# Phi has a period of 1, adjust for it when computing errors 

errors[i,j] = np.abs((phi[j] % 1) - phi_measured[i,j]) 

fig, axs = plt.subplots(2) 
for i in range(len(ancillae)): 

axs[0].scatter(phi, np.log10(errors[i,:])) 

axs[0].set(xlabel=’phi’, ylabel=’log10( phi_measured - (phi mod 

1))’) 

axs[0].legend([str(_i) + ’ ancillae’ for _i in list(ancillae)]) 

for i in range(len(ancillae)): 

axs[1].scatter(phi % 1, np.log10(errors[i,:])) 

axs[1].set(xlabel=’phi mod 1’, ylabel=’log10( phi_measured - (phi 

mod 1))’)

axs[1].legend([str(_i) + ’ ancillae’ for _i in list(ancillae)])

fig.set_size_inches(10, 20)

plt.show()

Reference 

1. C.J. O’Loan, Iterative phase estimation. J. Phys. A: Math. Theor. 43(1), 015301 (2010). https:// 
doi.org/10.1088/1751-8113/43/1/015301

https://doi.org/10.1088/1751-8113/43/1/015301
https://doi.org/10.1088/1751-8113/43/1/015301


21Trotterization 

Trotterization refers to a family of methods that approximate the exponential of a 
sum of non-commuting operators by products of exponentials of individual terms. 
This approximation plays a central role in quantum simulation, particularly for 
simulating time evolution under a Hamiltonian H . It allows us to construct circuits 
that simulate quantum dynamics without the need for additional ancilla qubits. 
While not asymptotically optimal, these methods are straightforward to implement 
and widely used on near-term devices. 

Let H = k 
j=0 H j. The Lie–Trotter and Suzuki–Trotter [1] formulas approx-

imate the time evolution operator e−iHt using the Baker–Campbell–Hausdorff 
formula 

e−iHt = e
−i 

k 

j=0 
Hjt = 

⎛ 

⎝e
−i 

k 

j=0
Hj

t
r 

⎞ 

⎠ 
r 

≈ 
k 

j=0 
e− iHj

t
r 

r 

+ O 
k2t 2

r 
. 

Here, r is the number of Trotter steps. The error arises because the matrices Hj 

generally do not commute, i.e., the commutator Hj, Hk = 0. Increasing the error 
in Trotterization arises from the fact that the matrices Hj do not commute in gen-
eral, i.e., the commutator Hj, Hk = 0. Increasing r improves the approximation 
at the cost of longer circuits. 

Higher order Trotter formulas can be constructed to reduce the error further. 
Although the error bounds on Trotter formulas do not scale well, Trotter methods 
have the advantage of not requiring additional (ancilla) qubits, and the circuit 
implementations of the individual eiHj 

t 
r can be straightforward. As an example, 

the second-order Suzuki–Trotter formula is 

e−iHt ≈ S2(t) = 
k 

j=0 
e− iHj

t
r 

0 

j=k 
e−iHj 

t 
r 

r 

+ O 
k3t 3

r2
.
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More generally, the (2k)th order Suzuki–Trotter formula is defined recursively as 
[2] 

e−iHt ≈ S2k (t) = S2k−2(uk t)
2S2k−2((1 − 4uk )t)S2k−2(u k t)

2

where uk = 1 
4−41/(2k−1) . 

Recent work has shown other higher order formulas with better scaling com-
pared to Trotter–Suzuki formulas [1, 3–5]. The bounds on Trotter errors are known 
to be loose, but in practice, the errors have been shown to be orders of magnitude 
lower [6]. Errors in Trotterizations can be reduced by grouping together commut-
ing subsets of {Hj} and changing the order of operations in which these groups are 
applied. 

Since H is often decomposed as a sum of Pauli strings, we provide below the 
procedure and quantum circuits for exponentiating Pauli strings. 

For convenience, we express Pauli operators as σk ∈ {I , X , Y , Z} where 
σ0,  σ1,  σ2,  σ3 = I ,X , Y , Z respectively. 

The exponentiation of a single Pauli gate σi ∈ {X , Y , Z} is straightforward since 
it is a local operator: 

exp(−i(I ⊗ .  .  .  ⊗ I ⊗ σi ⊗ I ⊗ .  .  .  ⊗ I )t) = I ⊗ . . . ⊗ I ⊗ Ri(2t) ⊗ I ⊗ . . . ⊗ I

where Ri(2t) is defined as 

Ri(2t) = exp(−itσi ).

For Pauli strings describing nonlocal operators, i.e., Pauli strings with more than 
one Pauli gate, the exponentiation is a little more involved. We first describe the 
kernel for these implementations: the exponentiation of strings of Pauli Z gates. 

Consider an arbitrary Pauli string 

P = ⊗
j 
k 

σ k

Without any loss of generality, let’s simply consider the non-trivial portion of the 
string, i.e., σk = I 

P̃ = ⊗
j 

k 0 

σ k

Similar to the procedure described in Chap. 27, Expectation Value Estimation, for 
obtaining expectation values, we may diagonalize this P̃ as 

P̃ = ⊗
j 

k 0 

V † k DkVk



21 Trotterization 167

Fig. 21.1 Circuits to exponentiate ZZ using: Left: One ancilla qubit; Right: No ancilla qubits 

which can be exponentiated as 

e−i P̃t  = ⊗
j 

k 0 

V † k e
−iDk tV k

where Dk = Z . Therefore, any arbitrary Pauli string can be exponentiated by 
applying single-qubit gates V † k to transform to the Z basis, exponentiating a Pauli 
string of Z operators, and transforming back to the computational basis by applying 
single-qubit gates Vk . Therefore, efficiently exponentiating Pauli Z strings is the 
kernel of this task. 

Two types of techniques have been developed for this operation: ancilla-based 
and ancilla-free implementations as shown in Fig. 21.1 [7, 8]. 

The single-qubit Z exponentiation is implemented as e−itZ = RZ (2t ) in Qiskit. 
These circuits are readily extended to longer Pauli Z strings, and a circuit to expo-
nentiate a general Pauli string P̃ = ⊗

j 
k 0 

σ k as e−it P̃ and the cX gates can be arranged 

as either a “chain/ladder” or as a “fountain” as shown in Fig. 21.2, among other 
options.

These circuits have been optimized to achieve a depth of O(log n) [9]. We note 
that dynamic circuits can further reduce the depth of these circuits from O(n) to 
O(1) [10]. 

We provide here as an example a Hamiltonian simulation of single-qubit Pauli 
terms H = X + Z using the first- and second-order Trotter method for various t, 
for varying number of Trotter steps, with the error plots shown in Fig. 21.3.

We then provide an example of Hamiltonian simulation of multi-qubit Pauli 
terms H = 0.9X ⊗ Y ⊗ Z + 1.1Y ⊗ Z ⊗ X . Since the generation of circuits 
for multi-qubit Pauli strings is a little more involved, we use built-in functions in 
Qiskit for this example, with results plotted in Fig. 21.4:

#!/usr/bin/python3 

import qiskit 

from qiskit_aer import UnitarySimulator
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Fig. 21.2 Ancilla-free circuit exponentiating an arbitrary Pauli string P̃ using cX gates arranged 
as a Top: chain or ladder; Bottom: fountain

from scipy.linalg import expm 

import numpy as np 

import matplotlib.pyplot as plt 

min_t = 1 
max_t = 5 
# Number of Trotter Steps 

m = [10,20,40,80,100, 200, 400, 800, 1000, 2000, 4000, 8000, 10000] 

# 1st order Trotter 

for t in range(min_t,max_t+1): 

# Calculate exact solution classically
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Fig. 21.3 Error scaling of first- and second-order Trotter methods

Fig. 21.4 Suzuki–Trotter errors for exponentiating (0.9X ⊗ Y ⊗ Z + 1.1Y ⊗ Z ⊗ X ) it

exact_solution = expm( -t * 1j * ( np.array([[0, 1], [1, 0]]) 

+ np.array([[1, 0], [0, -1]]))) 

errors = [] 
for r in m: 

# Create a register of 1 qubit 

myQRegister = qiskit.QuantumRegister(1, ’\psi’)



170 21 Trotterization

# Create a quantum circuit with using myRegister 

myCircuit = qiskit.QuantumCircuit(myQRegister) 
for _r in range(r): 

myCircuit.rx(t*2/r,0) 

myCircuit.rz(t*2/r,0) 

# Simulate the circuit to obtain overall unitary of Trotteri-

zation 

mySimulator = UnitarySimulator() 
result = mySimulator.run(myCircuit). result() 

finalUnitary = result.get_unitary() 
# Compare circuit unitary with exact unitary 

errors.append( np.linalg.norm(finalUnitary - exact_ 

solution,2)) 

plt.loglog(m,errors) 

# 2nd order Trotter 

for t in range(min_t,max_t+1): 

# Calculate exact solution classically 

exact_solution = expm( -t * 1j * ( np.array([[0, 1], [1, 0]]) 

+ np.array([[1, 0], [0, -1]]))) 

errors = [] 
for r in m: 

# Create a register of 1 qubit 

myQRegister = qiskit.QuantumRegister(1, ’\psi’) 

# Create a quantum circuit with using myRegister 

myCircuit = qiskit.QuantumCircuit(myQRegister) 
for _r in range(r): 

myCircuit.rx(t/r,0) 

myCircuit.rz(t*2/r,0) 

myCircuit.rx(t/r,0) 

# Simulate the circuit to obtain overall unitary of Trotteri-

zation 

mySimulator = UnitarySimulator() 
result = mySimulator.run(myCircuit).result() 
finalUnitary = result.get_unitary() 
# Compare circuit unitary with exact unitary 

errors.append( np.linalg.norm(finalUnitary - exact_ 

solution,2)) 

plt.loglog(m,errors,linestyle=’dashed’) 

plt.xlabel(’# of Trotter steps’) 

plt.ylabel(r’$|error|_2$’) 

plt.legend([’t = {}, 1st Order’.format(t) for t in range(min_t,max_
t+1)]

+[’t = {}, 2nd Order’.format(t) for t in range(min_t,max_t+1)])

plt.show()
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#!/usr/bin/python3 

import qiskit 

from qiskit_aer import UnitarySimulator 

from scipy.linalg import expm 

import numpy as np 

import matplotlib.pyplot as plt 

from qiskit.quantum_info import SparsePauliOp 

from qiskit.circuit.library import PauliEvolutionGate 

from qiskit.synthesis import SuzukiTrotter 

min_t = 1 
max_t = 5 
# Number of Trotter Steps 

m = [1,2,4,8,16,32,64,128] 
myOp = SparsePauliOp("XYZ",0.9) + SparsePauliOp("YZX",1.1) 
# 2nd order Suzuki-Trotter 

for t in range(min_t,max_t+1): 

# Calculate exact solution classically 

exact_solution = expm( -t * 1j * myOp.to_matrix()) 

errors = [] 
for r in m: 

# Define Suzuki-Trotter method 

mySynthesis = SuzukiTrotter(order=2, reps=r, cx_ 

structure=’chain’) 

# Create Pauli Evolution 

myEvolution = PauliEvolutionGate(myOp,time=t,synthesis= 
mySynthesis) 

# Append to a quantum circuit 

myCircuit = qiskit.QuantumCircuit(myOp.num_qubits) 
myCircuit.append(myEvolution,range(0,myOp.num_qubits)) 

# Simulate the circuit to obtain overall unitary of Trotteri-

zation 

mySimulator = UnitarySimulator() 
result = mySimulator.run(myCircuit.decompose(reps=2)). 

result() 

finalUnitary = result.get_unitary() 
# Compare circuit unitary with exact unitary 

errors.append( np.linalg.norm(finalUnitary - exact_ 

solution,2))

plt.loglog(m,errors)

# 4th order Suzuki-Trotter

for t in range(min_t,max_t+1):

# Calculate exact solution classically
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exact_solution = expm( -t * 1j * myOp.to_matrix()) 

errors = [] 
for r in m: 

# Define Suzuki-Trotter method 

mySynthesis = SuzukiTrotter(order=4, reps=r, cx_ 

structure=’chain’) 

# Create Pauli Evolution 

myEvolution = PauliEvolutionGate(myOp,time=t,synthesis= 
mySynthesis) 

# Append to a quantum circuit 

myCircuit = qiskit.QuantumCircuit(myOp.num_qubits) 
myCircuit.append(myEvolution,range(0,myOp.num_qubits)) 

# Simulate the circuit to obtain overall unitary of Trotteri-

zation 

mySimulator = UnitarySimulator() 
result = mySimulator.run(myCircuit.decompose(reps=2)). 

result() 

finalUnitary = result.get_unitary() 
# Compare circuit unitary with exact unitary 

errors.append( np.linalg.norm(finalUnitary - exact_ 

solution,2)) 

plt.loglog(m,errors,linestyle=’dashed’) 

plt.xlabel(’# of Trotter steps’) 

plt.ylabel(r’$|error|_2$’) 

plt.legend([’t = {}, 2nd Order’.format(t) for t in range (min_t,max_ 
t+1)] 

+ [’t = {}, 4th Order’.format(t) for t in range(min_t,max_t+1)])

plt.show()
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22Linear Combination of Unitaries 

Many quantum algorithms require the application of an operator that is not 
directly unitary, but rather a linear combination of known unitaries. This situation 
arises, for instance, in Hamiltonian simulation, quantum singular value transfor-
mation, and quantum linear systems solvers. The linear combination of unitaries 
(LCU) method enables such operators to be implemented on a quantum computer, 
assuming circuit-level access to each unitary component. It is especially powerful 
because it allows one to process non-Hermitian or even general matrices when 
combined with block-encoding and qubitization techniques [1]. 

Suppose we are given circuits or oracles for the unitaries Ul and their associated 
coefficients αl . We want to implement the operator 

U = 
l 

αlU l

on a quantum state. The LCU method accomplishes this by combining two 
subroutines: SELECT and PREPARE. 

The PREPARE operation encodes the coefficients into a quantum superposition: 

PREPARE|0 ⊗m = |α 

where |α = 1
α1 l 

√
αl |l s.t. αl ∈ R+. This is without any loss of generality since 

any phase of the coefficients can be absorbed into the unitary. 
The SELECT operation applies the appropriate unitary based on the index in 

the ancilla register: 

SELECT = 
l 

|l l| ⊗ Ul
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Fig. 22.1 A  circuit  
implementing the linear 
combination of unitaries of 
Pauli matrices in the example 
and code of this chapter

To implement the linear combination of unitaries, the following sequence is 
used: 

PREPARE† ⊗ I (SELECT )(PREPARE ⊗ I ).

Measuring the ancilla register in the state |0 ⊗m indicates the successful 
application of the linear combination of unitaries. 

Note that the LCU method is an instance of block encoding of an arbitrary 
matrix H , where H can be non-Hermitian, into a larger unitary. Block-encoded 
access to a matrix enables the use of powerful quantum algorithmic frameworks, 
including qubitization, introduced in Chap. 23, Qubitization and Quantum Sig-
nal Processing. A particularly efficient and versatile application of qubitization is 
quantum signal processing (QSP). 

Finally, we note that the LCU method can be used to add two matrices H1 and 
H2 via their block-encodings UH1 and UH2 . 

We provide as an example a Qiskit implementation of a circuit taking a linear 
combination of the unitaries: 

I ⊗ I + X ⊗ I + I ⊗ X + I ⊗ Z = 

⎛ 

⎜⎜⎝ 

2  1  1  0  
1 0 0 1
1 0 2 1
0 1 1 0

⎞

⎟⎟⎠

where the coefficients αl = 1 
4 ∀ l ∈ [0, 3], for which the corresponding 

PREPARE operation is simply a uniform superposition achieved by Hadamard 
gates. We provide an implementation below with the corresponding circuit shown 
in Fig. 22.1: 

#!/usr/bin/python3 

import qiskit 

from qiskit_aer import UnitarySimulator 

from qiskit.circuit.library import XGate, ZGate 

import numpy as np
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# LCU register 

lcuRegister = qiskit.QuantumRegister(2, ’LCU’) 

# Work register 

workRegister = qiskit.QuantumRegister(2, ’\psi’) 

myCircuit = qiskit.QuantumCircuit(workRegister,lcuRegister) 

# PREP+ operation 

myCircuit.h(lcuRegister) 

# SELECT operation 

myCircuit.append(XGate().control(num_ctrl_qubits=2,ctrl_ 

state=’11’),[*lcuRegister, workRegister[0]]) 

myCircuit.append(XGate().control(num_ctrl_qubits=2,ctrl_ 

state=’01’),[*lcuRegister, workRegister[1]]) 

myCircuit.append(ZGate().control(num_ctrl_qubits=2,ctrl_ 

state=’10’),[*lcuRegister, workRegister[0]]) 

# PREP operation 

myCircuit.h(lcuRegister) 

# Simulate circuit 

mySimulator = UnitarySimulator() 
result = mySimulator.run(myCircuit.decompose(reps=2)).result() 
# Extract subspace of successfully measuring LCU qubits as 0 

# and multiply by submormalization factor 4

print(np.array(result.get_unitary().data[0:4,0:4]).round(10)*4)
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23Qubitization and Quantum Signal 
Processing 

Many advanced quantum algorithms rely on applying polynomial transforma-
tions to the eigenvalues or singular values of a matrix. Such transformations are 
foundational to quantum algorithms for Hamiltonian simulation, linear system 
solving, amplitude amplification, and quantum machine learning. Two powerful 
frameworks—Qubitization and Quantum Signal Processing (QSP)—enable these 
polynomial transformations efficiently and with provable optimality in terms of 
gate complexity. 

Qubitization 

Qubitization constructs a unitary operator that acts as an SU (2) rotation in a 2D 
subspace associated with each eigenvalue of a matrix A [1]. This allows the appli-
cation of Chebyshev polynomial transformations to eigenvalues using repeated 
applications of a structured unitary. 

Consider the 2 × 2 rotation matrix: 

O(λ) = λ −√
1 − λ 2√

1 − λ2 λ 
.

whose powers are given by 

Ok (λ) = Tk (λ) −√
1 − λ2Uk−1(λ )√

1 − λ2Uk−1(λ) Tk (λ)
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Fig. 23.1 The operation Z 
followed by UA 

where Tk (λ) and Uk (λ) are Chebyshev polynomials of the first and second kind, 
respectively. If the scalar λ is replaced with a matrix A, then the matrix 

Ok (A) = Tk (A) −√
1 − A2Uk−1(A )√

1 − A2Uk−1(A) Tk (A) 

is a block-encoding of Tk (A). Using a linear combination of these Chebyshev 
polynomials (using LCU techniques introduced in Chap. 22: Linear Combina-
tion of Unitaries), any arbitrary polynomial of the matrix Awhich is the desired 
equivalent can be created. 

To extend this to arbitrary block-encodings of the form: 

UA = A ∗ 
∗  ∗  

; where A = 0⊗m UA 0
⊗m

qubitization introduces a reflection: 

Z = 2 0⊗m 0⊗m ⊗ I − I

to apply the operation OA = UAZ , which is the desired equivalent of O(A),  as  
shown in the circuit in Fig. 23.1. 

For a Hermitian A, repeated application of OA = UAZ will yield the desired 
Chebyshev polynomial of A. For non-Hermitian A, the alternating sequence OA = 
UAZ U 

† 
AZ can be used instead. 

Since the block-encoding of the resulting Chebyshev polynomial (an orthog-
onal polynomial basis) is a unitary operation, any arbitrary polynomial can be 
constructed using a linear combination of these unitaries. However, this would 
require an overhead of up to O(log(d)) ancillary qubits where d is the degree of 
the polynomial. 

Quantum Signal Processing 

Quantum signal processing (QSP) [2] addresses the issue of multiple ancilla qubits 
required to form arbitrary polynomials as linear combinations of unitaries. This is 
achieved by forming a polynomial directly by applying rotation operations to the 
ancilla qubit. The main idea behind quantum signal processing is to replace the Z 
gate in qubitization with the general Z rotations RZ (2φi), where φi ∈ ∈ Rd+1
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Fig. 23.2 Top: The controlled rotation operation cRφj . Bottom: A quantum signal processing 
circuit for a non-Hermitian block-encoding 

is a predetermined sequence of d + 1 rotation angles to form a block-encoding of 
the desired polynomial P(A): 

P(A) = 0|⊗mU (A)|0 ⊗m

U (A) = e−iφ0Z 
d 

j=1 
UAe

−iφj Z

where A is Hermitian. An overview of a quantum signal processing circuit for 
a non-Hermitian block-encoding UA of a matrix A is given in Fig. 23.2, where 
block-encoding and its Hermitian conjugate are used in an alternating sequence. 
The quantum signal processing theorem [2] states that a sequence of d + 1 rota-
tion angles exists for any complex polynomial P of maximum degree d , and the 
polynomial is even for even d and odd for odd d . Furthermore, it states that the 
complex conjugate of the polynomial can be formed using the phase angles − . 

Theorem (Quantum Signal Processing [2]) The quantum signal processing 
sequence U produces a matrix that may be expressed as a polynomial function 
of x: 

U = eiφ0Z 
d 

k=1 
W (x)eiφk Z = P(a) iQ(a)

√
1 − a2 

iQ†(a)
√
1 − a2 P∗(a) 

For x ∈ [−1, 1 ], and a exists for any polynomials P, Q in x s.t.: 

(i) deg(P) ≤ d , deg(Q) ≤ d − 1. 
(ii) P has a parity (is even or odd) d mod 2 and Q has a parity (d − 1) mod 2. 
(iii) |P|2 + 1 − a2 Q2 = 1.

Using this result, we note that any arbitrary polynomial can be formed by tak-
ing a linear combination of the even and odd parts of the polynomial. Furthermore, 
the real or complex parts of a polynomial can be extracted by taking a linear com-
bination of the polynomial and its complex conjugate. There are various libraries 
for calculating the required phase angles for any desired polynomial [2, 3], with
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QSPPACK [3] providing state-of-the-art performance at the time of writing this 
manuscript. 

Recent work dubbed Generalized Quantum Signal Processing has generalized 
the Z rotations on the ancilla qubit to include X and Y rotations [4], which allows 
arbitrary polynomials of degree d to be constructed without parity decompositions. 
This method requires access to a block-encoding of eiA, rather than A itself. 

Quantum signal processing is currently the most powerful and optimal method 
for many quantum algorithms. The quantum eigenvalue transform, quantum sin-
gular value transform [5], factoring, phase estimation, Hamiltonian simulation, 
linear system solution, amplitude amplification, eigenstate filtering, and many 
other quantum computing problems can be reformulated as a quantum signal 
processing problem with optimal or near-optimal scaling results [2]. 

In Fig. 23.2, we show the implementation of a controlled rotation using a phase 
angle φi and a quantum signal processing circuit implementing the sequence of 
controlled rotations to implement a polynomial of a matrix A using its block-
encoding UA. 

Quantum Eigenvalue Transformation and Quantum Singular 
Value Transformation 

We can now summarize the quantum signal processing procedure applied to Her-
mitian and non-Hermitian matrices as general frameworks referred to as Quantum 
Eigenvalue Transformation and Quantum Singular Value Transformation. 

For a Hermitian matrix A = V † V , applying quantum signal processing 
directly yields 

P(A) = V †P( )V

which is known as the quantum eigenvalue transformation. 
For a non-Hermitian matrix A = U V †, one can form odd polynomials 

Podd (A) = UPodd ( ) V †

and even polynomials 

Peven(A) = V †Peven( )V † or Peven(A) = UPeven ( )U

by alternating between UA and U 
† 
A . This is known as the quantum singular value 

transformation. 
Though being unable to form even polynomials of A of the form UPeven( )V † 

may seem restrictive, several important applications can be realized through this 
framework, e.g., solving linear systems by approximating the odd function x−1 

with an odd polynomial Px−1 (A) ≈ A−1.



References 183

References 

1. G.H. Low, I.L. Chuang, Hamiltonian simulation by qubitization. Quantum 3, 163 (2019). https:// 
doi.org/10.22331/q-2019-07-12-163 

2. J.M. Martyn, Z.M. Rossi, A.K. Tan, I.L. Chuang, Grand unification of quantum algorithms. 
PRX Quant. 2(4), 040203 (2021). https://doi.org/10.1103/PRXQuantum.2.040203 

3. Y. Dong, X. Meng, K.B. Whaley, L. Lin, Efficient phase-factor evaluation in quantum sig-
nal processing. Phys. Rev. A 103(4), 042419 (2021). https://doi.org/10.1103/PhysRevA.103. 
042419 

4. D. Motlagh, N. Wiebe, Generalized quantum signal processing (2023). arXiv. https://doi.org/10. 
48550/ARXIV.2308.01501 

5. A. Gilyén, Y. Su, G.H. Low, N. Wiebe, Quantum singular value transformation and beyond: 
exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual 
ACM SIGACT Symposium on Theory of Computing (ACM, Phoenix AZ USA, 2019), pp. 193– 
204. https://doi.org/10.1145/3313276.3316366

https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.48550/ARXIV.2308.01501
https://doi.org/10.48550/ARXIV.2308.01501
https://doi.org/10.1145/3313276.3316366


24Amplitude Amplification 
and Estimation 

Many quantum algorithms, including Grover’s search and quantum Monte Carlo, 
are inherently probabilistic and produce a desired outcome with some success 
probability p < 1. When this success probability is low, repeating the algorithm 
naively increases the number of required samples to O(1/p), which can be inef-
ficient. Amplitude amplification is a powerful quantum technique that boosts this 
success probability quadratically, requiring only O 1/ √p repetitions [1]. When 
p is unknown, amplitude estimation provides an efficient way to estimate it using 
elements of phase estimation, again achieving quadratic speedup over classical 
sampling methods. 

Quantum Amplitude Amplification 

Consider a quantum algorithm A acting on the input state |0 ⊗n to prepare an 
output state 

A|0 ⊗n = |ψ = √
p ψgood + 1 − p|ψbad 

where 

ψgood |ψ = ψgood |ψgood = p

ψbad |ψ = ψbad |ψbad = 1 − p

s.t. ψgood is the desired output with success probability p. The amplitude ampli-
fication procedure will boost the success probability to O(1) using O 1/ √p 
applications of A.
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More specifically, this is achieved using O
√
p applications of an operator Q, 

sometimes referred to as a Grover operator, of the form: 

Q =  −AS0A−1 Sgood

Here, Sgood is an operator that marks the good subspace with a −ve phase: 

Sgood |ψ =  −  √p ψgood + 1 − p|ψbad 

and S0 is an operator that marks the state |0 ⊗n with a −ve sign: 

S0
√
p|0 ⊗n + 1 − p|⊥ =  −p|0 ⊗n + 1 − p|⊥ 

Note that the operator Sgood is specific to A [2] provides a guide to imple-
menting the operator Sgood given A. On the other hand, the circuit shown in 
Fig. 24.1 is an implementation of the operation S0, which has the following matrix 
representation: 

S0 = 

⎛ 

⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜⎜ 
⎜ 
⎝ 

−1 
1 
1 

. . . 
1 
1
1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

Let us analyze the Grover operator and its effect. First, let us define a 2D 
subspace spanned by the basis states ψgood and |ψbad . This can be visualized 
using Fig. 24.2.

Using this figure, one may easily visualize that the operator −Sgood simply 
reflects a state across |ψbad as shown in Fig. 24.3.

Therefore, we may rewrite it as a Householder reflector 

−Sgood = I − 2|ψbad ψbad |

Fig. 24.1 Implementation of 
S0, a unitary circuit that 
marks the state |0 ⊗n with − 
ve phase
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Fig. 24.2 2D subspace 
spanned by the good and bad 
states

Fig. 24.3 Reflecting across 
|ψbad

We now turn to the remaining part of the Grover operator: AS0A−1. 
Since the operator S0 simply marks the standard basis state |0 with a −ve 

phase and leaves the rest of the basis states unchanged, it can also be rewritten as 
the Householder reflector: 

S0 = I − 2|0 0|
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Substituting this into AS0A−1 we get 

AS0A−1 = A(I − 2|0 0|)A−1 

= I − 2|ψ ψ |

which is clearly a Householder reflector across that state |ψ in the 
ψgood , |ψbad basis. Using this, we can rewrite the Grover operator as a product 

of two Householder reflectors 

Q = R|ψ R bad

where 

Rbad = I − 2|ψbad ψ bad |

and 

R|ψ = I − 2|ψ ψ |

Geometrically, we may now visualize these two reflections using Fig. 24.4. 
Visually we can see that the amplitude of |ψ has been boosted. We can use 

this visual argument to rewrite |ψ and Q: 

|ψ = sin θ ψgood + cos θ |ψbad

Q|ψ = sin 3θ ψgood + cos 3θ |ψbad

Fig. 24.4 One iteration of 
amplitude amplification 
visualized as two reflections 
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where sin θ = √p, cos θ = 
√
1 − p. We can see that for θ ≤ π/ 4, this will lead 

to an increase in the probability of measuring ψgood . We can now formalize this 
process to obtain the optimum number of applications of Q. 

It can be shown [1] that the eigenvectors of Q are 

|ψ± 
1 √
2 

1 √
p 

ψgood ± i √
1 − p 

|ψbad 

with eigenvalues λ± = e±i 2θ . 
By expressing |ψ in the eigenbasis |ψ± and applying Q j times, we arrive at 

Qj|ψ = 
− i√
2 

e(2j+1)iθ |ψ+ e−(2j+1)iθ |ψ− 

= 1√
p 
sin((2j + 1)θ ) ψgood + 1√

1 − p 
cos((2j + 1)θ )| ψbad

As is apparent, applying Q too many times will lead to over-rotation, which 
will subsequently start reducing the probability of measuring the good state. If a 
is known, choosing j = π/4θ = O

√
p leads to 

1 √
p 
sin((2j + 1)θ ) ≥ 1 − p√

p 
≥ max(1 − p, p) ≥ 1/2 = O(1)

which is a quadratic speedup. In many cases p may not be known, but it can be 
estimated using the amplitude estimation procedure (presented later in this chapter) 
without losing the quadratic speedup [1]. The overall complexity of amplitude 
amplification can now be summarized as follows. 

Theorem (Amplitude Amplification) Let A be an unitary algorithm such that 
A|0 ⊗n = |ψ = √

p ψgood + 
√
1 − p|ψbad . Given access to unitaries that apply a 

phase of −1 to the states |0 ⊗n and ψgood and choosing m = π/4θ , QmA|0 ⊗n 

produces a state with the outcome ψgood with at least max(1 − a, a) = O (1)
probability where sin θ = √

p and 0 <  θ  ≤ π/2. 

The overall circuit for amplitude amplification is provided in Fig. 24.5. 
More advanced algorithms exist for amplitude amplification for specific prob-

lems, a notable example being Variable-Time Amplitude Amplification [3], which 
can provide speedups for algorithms whose average stopping time is smaller than 
the maximum stopping time by recasting it as a variable-time stopping algorithm. 
A more efficient version of the Variable-Time Amplitude Amplification subroutine 
was presented by [4].

Fig. 24.5 Circuit for 
amplitude amplification 
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Grover’s search algorithm [5] is a special case of amplitude amplification, 

which searches for an entry in an unstructured database of N entries using O
√
N 

queries to the database compared to O(N ) classical queries. 
Note that in the formulation above, we have considered |0 ⊗n as the initial 

state. It may be possible that the input to algorithm A is a quantum state |φ 
prepared using another quantum algorithm Aφ . In this case, the operator S0 (or 
the reflection R0) will need to be replaced by an operation marking the state |φ 
(or a Householder reflector about |φ ). In the worst case, this would necessitate 
multiple invocations of Aφ . 

Quantum Amplitude Estimation 

The process of amplitude amplification requires knowledge of the amplitude p cor-
responding to the probability of measuring a “good” outcome. In many practical 
quantum algorithms, however, this amplitude is not known in advance. The quan-
tum amplitude estimation (QAE) procedure addresses this by providing a method 
to estimate p with quadratic improvement in sampling complexity compared to 
classical techniques. 

The setup for amplitude estimation is similar to amplitude amplification [1]. 
Given a quantum state 

|ψ = √
p ψgood + 1 − p|ψbad 

where 

ψgood |ψ = √p, ψbad |ψ = 1 − p 

the goal is to estimate the unknown success probability p up to a desired precision 
. 
A naïve approach to estimating

√
p up to a precision by directly sampling 

|ψ and counting the number of ψgood measurements requires 

t = O
√
p 1 − √p 

2 

samples. A quadratic improvement can be made in the number of samples using 
the QAE procedure. 

The quantum amplitude amplification procedure utilizes elements of amplitude 
amplification and quantum phase estimation. The key idea is to transform the esti-
mation of p into an eigenvalue estimation problem, which is then solved using 
quantum phase estimation. 

From our previous analysis of amplitude amplification, we note that 

p = sin2(θ)
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as evident from Fig. 24.4. 
Furthermore, we also know that the eigenvalues of Q are λ± = e±i 2θ . There-

fore, by applying controlled versions of Q, one may estimate θ as θ̃ , which leads 
to an estimate of p as p̃ = sin2 θ̃ . 

If the estimation error in θ satisfies 

θ − θ̃ ≤

then the error in p̃ satisfies 

|p − p̃| ≤ 2 p(1 − p) + 2

Further analysis of this method leads to the following result. 

Theorem (Amplitude Estimation [1]) For any positive integer k, amplitude ampli-
fication produces an estimate 0 < p̃ ≤ 1 s.t. 

|p − p̃| ≤ 2 πk
√
p(1 − p )

t
+ k2 

π 2

t2 

with probability at least 8/π 2 when k = 1 and with a probability greater than 
1 − 1 

2(k−1) for k ≥ 2 using t evaluations of A. 

For further details, we refer to the original work by [1]. The procedure is sum-
marized in the circuit in Fig. 24.6. Once an estimate θ̃ is obtained, one may 
estimate p̃ as 

p̃ = sin2 θ̃ .

To obtain p̃ up to a precision ε, the number of samples required is 

t = O
√
p(1 − p)

Fig. 24.6 Circuit for 
quantum amplitude 
estimation 
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which is a quadratic improvement over the classical sampling approach. 
Similar to quantum phase estimation, the output state is of the form |y |ψ ⊗ n, 

where |y encodes the estimated amplitude. This can be extracted as p ≈ 
sin2 π ym , where m is the number of basis states in the phase estimation register. 

This subroutine has numerous applications. For instance, it can be used to 
estimate the expectation values of unitary operators, as outlined in Chap. 27: 
Expectation Value Estimation. The quadratic improvement of quantum amplitude 
estimation over naïve sampling is exploited in the quantum Monte Carlo algorithm 
to achieve a speedup over classical Monte Carlo, which is presented in the next 
chapter. 
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25Quantum Monte Carlo 

Monte Carlo methods are a class of numerical techniques widely used to 
approximate integrals and expectation values, particularly in high-dimensional or 
analytically intractable settings. A prototypical goal is to compute integrals of the 
form 

Ef [h(X )] = 
X 

f (x)h(x) dx

where Ef [h(X )] is the expectation value of a function h under the density function 
f over a random variable x. The classical Monte Carlo estimate for J samples is 

ĥJ = 
1 

J 

J 

j=1 
h x(j) 

where x(j) are independent identically distributed samples over the distribution 
x(j) ∼ f ( x). Based on the strong law of large numbers, as J →  ∞, ĥJ → Ef [h(X )]. 
However, to achieve an estimation error = ĥJ − Ef [h(X )] , the required number 

of samples J scales as J = O 1
2 . 

Quantum Monte Carlo achieves a quadratic speedup, requiring only O 1 sam-
ples using quantum amplitude estimation, which we developed in the previous 
chapter. 

Consider 2n sampling points corresponding to bitstrings x. Assume that an 
algorithm A operating on n qubits prepares the state 

A|0 ⊗n = 
2n−1 

x=0 
a2 x |x
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Consider also a function v(x) : {0, 1}n → R, mapping the bitstrings x to v(x).  We  
would like to estimate the expectation v alue

Ea[v(A)] = 
2n−1 

x=0 
|ax|2v(x )

In this setting f (x) and h(x) are analogous to |ax|2 and v(x) respectively. v(x) is 
accessible through a rotation unitary R operating on the same n qubits as A, and 
an ancilla qubit: 

R|x 0 = |x 1 − v(x)|0 + v(x)|1 

Combining these two operations as F 

F |0 ⊗n+1 = R(A ⊗ I )|0 ⊗n+1 

= |χ = 
2n−1 

x=0 
ax|x 1 − v(x)|0 + v(x)|1 

We can see that measuring the probability of measuring the rightmost qubit as |1 
for the state |χ is 

p(|· 1 ) = |ax|2v(x ) = μ

which is the desired expectation value μ = Ea[v(A )]. Estimating this by repeated 
sampling leads to a standard error 

= μ(1 − μ )
t 

implying t = O μ(1−μ )
2 samples for precision , matching the classical Monte 

Carlo rate. 
To achieve a quadratic improvement, we apply the quantum amplitude estima-

tion (QAE) procedure. We identify the target “good” state as 

ψgood = |· 1 

so that 

|χ = √
μ ψgood + 1 − μ2|ψbad 

We will now proceed with constructing the remainder of the ingredients for 
quantum amplitude estimation.
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Consider a unitary which marks the good states |· 1 with a –ve phase 

Sgood = I − 2I ⊗ |1 1|

This operator flips the sign of the amplitude on the “good” subspace, and is 
trivially implemented with a Z gate applied to the rightmost qubit: 

(I ⊗ Z)|χ = 
2n−1 

x=0 
ax 1 − v(x)(I ⊗ Z)|x 0 + 

2n−1 

x= 0
ax v(x)(I ⊗ Z)|x 1 

= 
2n−1 

x=0 
ax 1 − v(x)|x 0 − 

2n−1 

x=0 
ax v(x)|x 1 

= 1 − μ2|ψbad
√

μ ψgood .

Similar to amplitude amplification, we define an operator that reflects across |χ 

U = I − 2|χ χ

which can be implemented as U = FS0F †. 
Using these ingredients, we construct the Grover operator 

Q =  −FS0F† Sgood

As we know from the previous chapter, the eigenvalues of Q are e±i2θ where 
sin θ = √μ. Applying quantum phase estimation to Q allows us to estimate θ , 
and thus the desired quantity: 

μ = sin2( θ)

The result is a quantum algorithm that estimates μ with only 

t = O 
μ(1 − μ )

queries, quadratically fewer than the classical sampling approach.



26Matrix-Vector Multiplications 
and Affine Linear Operations 

Matrix-vector and affine linear operations are foundational in scientific comput-
ing. This chapter presents quantum methods to implement these operations using 
block-encodings, with emphasis on techniques that improve success probability 
and ancilla overheads. 

Matrix-Vector Multiplication Using Block-Encoding 

Recall that a matrix A can be encoded in a unitary 

UA = A/α ∗ 
∗  ∗  

where α ≥ A is a normalization constant. Measuring the m ancilla qubits in the 
state |0 ⊗m yields 

A/α = 0|m ⊗ In UA |0 m ⊗ I n

A matrix-vector product can be applied as 

UA|0 ⊗m|b = 
A 
α ∗ 
∗  ∗  

b
0

=
Ab
α 
∗ 

= 
1

α 
|0 ⊗m|Ab + | ⊥

The ancilla qubits can be measured successfully as |0 ⊗m with a probability 

p |0 ⊗m = 
1 

α2 A||b 2
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Sequence of Matrix-Vector Multiplications 

One may apply a sequence of matrix-vector products using multiple block encod-
ings. As an example, consider two block encodings UA1 and UA2 , which are 
(α1, m1, 0 ) and (α2, m2, 0 ) block encodings of A1 and A2, respectively as shown 
in Fig. 26.1. We may prepare the quantum state 

1 

α1α2 
A2A1|ψ 

by executing the following circuit. 
There are a couple of important things to note here. First, the normalization 

factors accumulate as a product, leading to an exponentially diminishing suc-
cess probability. Second, the number of ancilla qubits increases as the sum of 
individual ancilla qubits for each block encoding, i.e., they grow linearly. Two 
techniques address these issues: the compression gadget reduces ancilla overhead, 
and uniform singular value amplification (USVA) boosts success probability. 

Compression Gadget 

The compression gadget [1, 2] is a transformation of a quantum circuit applying a 
sequence of matrix-vector multiplications into an equivalent one with fewer ancilla 
qubits. Consider a sequence of (αi, mi, 0 ) block encodings UAi for matrices Ai, 
which are applied to a quantum state |ψ to get 

1 

i=L 

1 

αi 
Ai|ψ 

Denoting mmax = max 
i 

m i as the largest number of ancilla needed for each indi-

vidual block encoding and defining λ = log2 L + 1, the unitary operation ADD is 
defined as 

ADD|i = mod 
λ 

(i + 1)

Fig. 26.1 Circuit for applying a sequence of 2 matrix-vector multiplications with two separate 
block encodings 
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Fig. 26.2 Quantum circuit for a compression gadget 

The compression gadget may be constructed as shown in Fig. 26.2. 
The block encodings reuse the mmax qubits, at the expense of λ additional 

ancilla qubits for a “counter.” 

Uniform Singular Value Amplification 

We now address the issue of exponentially decaying success probabilities for 
a sequence of matrix multiplications using the block-encoding method. This is 
achieved by using a block encoding Ui to create another block-encoding with 
a higher success probability (smaller normalization factor). These boosted block 
encodings are then used to compute the matrix-vector products. 

The uniform singular value amplification (USVA) [2, 3] method boosts the nor-
malization factor of each block encoding toward the largest possible value, i.e., 
the intrinsic normalization factor αmin A . This is achieved by fitting an odd 
polynomial to a linear function 

P(x) = 
1 − δ

αi 
x 

over the interval x ∈ [0,  αi] using quantum signal processing, as shown in 
Fig. 26.3. This is done individually for each block UAi . 

Computing the matrix polynomial P(Ai) then yields a new block-
encoding of Ai with a smaller normalization constant. More specifi-

cally, it is a Ai 
(1−δ) , mi + 1, ˜i Ai block-encoding of Ai, and it requires

Fig. 26.3 Visualization of 
the operation of uniform 
singular value amplification 
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O αi 
δ Ai log α i

Ai ˜i 
accesses to (controlled versions of) UAi and its adjoint (QSP 

sequence has a phase angle sequence of length, or P(x) is a polynomial of degree 

O αi 
δ Ai log α i

Ai ˜i 
). The error ˜i in the new block encoding arises from the 

imperfect polynomial fit through QSP, and may be reduced exponentially by 
increasing the number of phase angles in the QSP sequence. 

USVA Lemma [2]: Let UA be a (α, m, 0) block encoding of A.  A  
A 

1−δ , m + 1 A block encoding ŨA of A can be constructed using 

O α 
δ A log

α
A applications of controlled-UA and U 

† 
A . 

We may now use these boosted block encodings, denoted by ŨAi , to compute 
the matrix-vector products (using a compression gadget to reduce ancilla over-
heads). We state the result of [2] in the following theorem, which considers the 
more general case where UAi is a (αi, mi i Ai ) block encoding of Ai. 

Theorem ([2]) Given (αi, mi i Ai ) block encodings UAi of Ai for 1 ≤ i ≤ L
where i i ≤ 1 2 . For any 0 ≤ ≤ 1

2L a α , m , block encoding of 1 
i=L Ai can 

be constructed where 

L 
i=1 Ai 

2(1 − δ)L 
≤ α ≤ 

e1/2 L 
i=1 Ai

2(1 − δ) L

m = mmax + log2 L + 2

= e 
1
2 L + 

L 

i=1 
l 

L 

i=1 

Ai 

using O αi 
δ Ai log α i

Ai 
(controlled) applications of each UAi and its adjoint. 

In summary, the USVA procedure requires one additional ancilla qubit, leading 
to mmax + 1 ancillae for each boosted block encoding ŨAi . Using a compression 
gadget to apply the matrix products leads to a total of mmax + log2 L + 2 ancilla 

qubits using total of O 
L 
i=1 

αi 
δ Ai log α i

Ai 
applications of block encodings of 

UAi . The success probability of the final product is 

p |0 ⊗(mmax+log2 L+2) = 

⎡ 

⎢⎢⎣ 
e
1
2 

L 

i=1 
Ai 

2(1 − δ)L 
1 

i=L 
Ai|ψ 

⎤ 

⎥ ⎥⎦
2

with an error of 

= e 
1
2 L + 

L 

i=1 
l 

L 

i=1 
Ai .
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Affine Linear Operations 

So far, we have developed methods to apply matrix-vector products (linear 
operations) of the form 

1 

i=L 
Aix 

We now turn our attention to the more general sequences of affine linear operations 
of the general form: 

x(i+1) = Ax(i) + b (i)

We present two methods for encoding affine linear operations on quantum com-
puters: solving a block-linear system of equations and performing block-matrix 
multiplications. As an example, we will consider the following sequence of affine 
linear operations to demonstrate the two techniques 

x1 = A0x0 + b 0

x2 = A1x1 + b 1

After presenting these two methods, we explain a post-processing step to extract 
the desired final vector and methods to boost the success probability of this post-
processing step. 

Block-Linear System of Equations: 

⎛ 

⎝ 
I 

−A0 I 
−A1 I 

⎞ 

⎠ 

⎛ 

⎝ x0 
x1 
x2 

⎞ 

⎠ = 

⎛ 

⎝ 
x0
b0
b1

⎞
⎠

Solving this linear system of equations yields a column of vectors 

⎛ 

⎝ 
x0 
x1 
x2 

⎞ 

⎠ = 

⎛ 

⎝ x0 
A0x0 + b0 
A1 x1 + b1

⎞
⎠

This block-matrix system of equations may be solved using direct quantum linear 
system algorithms (QLSA), which are introduced in Lecture 30 Quantum Linear 
System Algorithms: Direct Methods. Efficient application of quantum linear sys-
tem algorithms requires the linear system to be well-conditioned. For the case 
Ai 1, the linear system is well-conditioned, i.e., for 1 ≤ i ≤ l, κM , = 2 l
where M is the block-linear system. Note that the QLSA will introduce a solution 
error.
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Block-Matrix Multiplication 

The following sequence of matrix multiplications M2M1b = x yields the same 
result 

⎛ 

⎝ 
I 

I 
A1 I 

⎞ 

⎠ 

⎛ 

⎝ 
I 
A0 I 

I 

⎞ 

⎠ 

⎛ 

⎝ x0 
b0 
b1 

⎞ 

⎠ 

= 

⎛ 

⎝ 
I 

I 
A1 I 

⎞ 

⎠ 

⎛ 

⎝ x0 
A0x0 + b0 

b1 

⎞ 

⎠ 

= 

⎛ 

⎝ 
I 

I 
A1 I 

⎞ 

⎠ 

⎛ 

⎝ 
x0 
x1 
b1 

⎞ 

⎠ =
⎛
⎝ x0

x1
A1x1 + b1

⎞
⎠ =

⎛
⎝ x0
x1
x2

⎞
⎠

UM1 = M1/α1 ∗ 
∗  ∗  

; UM2 = M 2/α2 ∗
∗ ∗

The procedures presented above for a sequence of matrix multiplications may then 
be used to implement this operation. 

Post-processing and Boosting Success Probabilities 

The two methods presented earlier prepare a quantum state encoding the entire 
sequence of vectors as 

|x = 
l 

i=0 
|i xi 

⎛ 

⎜⎜⎜⎝ 

|x0 
|x1 
... 

|x2 

⎞ 

⎟⎟⎟⎠

The first register |i is often referred to as an index register or a Feynman– 
Kitaev clock, and the second register |xi is the work register. To prepare the 
desired final state |xi , the index register needs to be measured. Measuring the 
index register in the state |l indicates that the work register is in the state |xi . 
The probability of a successful measurement is 

p(|l ) = 
xl 2

x 2 

which diminishes as the number of steps l increases. To circumvent this issue, a 
sequence of p “copy” steps can be appended to the sequence of operations: 

xl+i = xl+i−1 ∀ i ∈ 1, p
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which, in the case of the block-linear system of equations approach, can be 
appended to the existing matrix as 

⎛ 

⎝ 
I 

−A0 I 
−A1 I 

⎞ 

⎠ 

⎛ 

⎝ 
x0 
x1 
x2 

⎞ 

⎠ = 

⎛ 

⎝ 
x0 
b0 
b1 

⎞ 

⎠ → 

⎛ 

⎜⎜⎜⎜⎝ 

I 
−A0 I 

−A1 I 
−I  I  

−I  I  

⎞ 

⎟⎟⎟⎟⎠ 

⎛ 

⎜⎜⎜⎜⎝ 

x0 
x1 
x2 
x2 
x2 

⎞ 

⎟⎟⎟ ⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x0
b0
b1
0
0

⎞
⎟⎟⎟⎟⎠

Note that this does not violate the no-cloning theorem. The boosted success 
probability is 

psucc = 
l+p 

i=l 
p(|i ) = 

p 

i=0 

xl+i 
2

x 2 = (p + 1) 
xl 2

x 2 

The success probability can be further boosted by a quadratic factor using 
amplitude amplification. 

As an example, for the block-linear system approach, appending these copy 
steps yields the block matrix: 

⎛ 

⎝ 
I 

−A0 I 
−A1 I 

⎞ 

⎠ 

⎛ 

⎝ x0 
x1 
x2 

⎞ 

⎠ = 

⎛ 

⎝ 
x0
b0
b1

⎞
⎠

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

I 
∗ I 

. . . . . . 
∗ I 

−I  I  
. . . . . . 

−I  I  

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

x0 
∗ 
... 
xl 
xl 
xl 
xl 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

= 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

x 0
∗
...

bl−1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the measurement operation will also lead to renormalization due to 

the Born rule, and any error in |x will be amplified in |xl by a factor of x 2 

xl 
2 . 

The techniques presented in this chapter are used extensively to develop quan-
tum algorithms for differential equations and iterative quantum linear system 
algorithms. 
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Part VI 

Quantum Algorithms 

This part provides an overview of foundational algorithms developed for quantum 
computers, with a focus on their application to scientific and engineering computa-
tion. Developing quantum algorithms necessitates a fundamental rethinking due to 
key differences between classical computing models, such as the Turing machine, 
and the gate-based quantum computing model. While classical algorithms have 
benefited from decades of refinement, specialized libraries (such as BLAS for lin-
ear algebra), and dedicated hardware accelerators, quantum computing remains in 
an early stage. Progress is shaped by both hardware limitations, such as error rates 
and coherence times, and the development of new algorithmic paradigms. 

The field of quantum algorithms is broad and includes celebrated results such 
as Shor’s factoring and Grover’s search; however, we deliberately leave out several 
well-known algorithms that, while foundational, have limited direct impact on the 
kinds of large-scale numerical and simulation problems faced by computational 
engineers. Instead, we focus on core algorithmic techniques—such as expectation 
value estimation, Hamiltonian simulation, quantum linear system solvers, differen-
tial equation solvers, and variational methods—that form the backbone of quantum 
scientific computing. These algorithms are chosen for both their conceptual sig-
nificance and their practical relevance to problems where quantum computers are 
expected to offer genuine advantages over classical approaches. Our goal is to pro-
vide readers with a toolkit of quantum algorithms that are most likely to influence 
the development of computational science as quantum hardware matures, while 
being candid about current limitations and open challenges. 

Chapter 27, “Expectation Value Estimation”, presents a variety of quantum 
techniques for extracting physical observables and statistical quantities from quan-
tum states, providing the foundation for scientific and engineering applications of 
quantum algorithms. 

Chapter 28, “Hamiltonian Simulation Techniques”, introduces the central 
challenge of simulating quantum time evolution, reviewing several quantum 
approaches for approximating the dynamics of quantum systems relevant to 
chemistry, materials, and physics. 

Chapter 29, “Eigenvalue Problems”, surveys quantum algorithms for computing 
eigenvalues and eigenvectors of matrices, with applications to spectral analysis, 
principal component methods, and quantum chemistry. 

Chapter 30, “Quantum Linear System Algorithms: Direct Methods”, covers 
direct quantum algorithms for solving linear systems of equations, such as the

https://doi.org/10.1007/978-3-032-03325-3_27
https://doi.org/10.1007/978-3-032-03325-3_28
https://doi.org/10.1007/978-3-032-03325-3_29
https://doi.org/10.1007/978-3-032-03325-3_30
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Harrow–Hassidim–Lloyd (HHL) algorithm, and discusses conditions for efficient 
implementation. 

Chapter 31, “Quantum Linear System Algorithms: Iterative Methods”, presents 
iterative quantum algorithms designed for large or structured linear systems, 
exploring their potential for exponential speedup and discussing issues such as 
preconditioning. 

Chapter 32, “Quantum Ordinary Differential Equation Algorithms: Block-
Matrix Algorithms”, describes methods for mapping systems of ordinary differ-
ential equations (ODEs) to block-linear systems solvable by quantum algorithms, 
addressing both homogeneous and inhomogeneous problems. 

Chapter 33, “Quantum Ordinary Differential Equation Algorithms: Time-
Marching Algorithms”, introduces quantum algorithms that simulate the time 
evolution of ordinary differential equations (ODE) using time-marching schemes. 

Chapter 34, “Quantum Partial Differential Equation Algorithms”, explores 
quantum algorithms for partial differential equations (PDEs), focusing on strate-
gies for discretization, reduction to ODE systems, and direct quantum solution 
techniques for high-dimensional problems in engineering and the sciences. 

Chapter 35, “Variational Algorithms: Theory”, develops the mathematical and 
algorithmic framework for variational quantum algorithms, which employ hybrid 
quantum-classical optimization to solve problems in simulation, optimization, and 
machine learning. 

Chapter 36, “Notable Variational Algorithms”, surveys prominent variational 
quantum algorithms—including the Variational Quantum Eigensolver (VQE), 
Quantum Approximate Optimization Algorithm (QAOA), and Variational Quan-
tum Linear Solver (VQLS)—and discusses their applications in quantum chem-
istry, combinatorial optimization, and linear algebra. 

Chapters 27–34 are ordered to build upon one another, with earlier chapters cov-
ering more mature techniques and later chapters highlighting emerging methods 
and recent progress in quantum algorithm development.

https://doi.org/10.1007/978-3-032-03325-3_31
https://doi.org/10.1007/978-3-032-03325-3_32
https://doi.org/10.1007/978-3-032-03325-3_33
https://doi.org/10.1007/978-3-032-03325-3_34
https://doi.org/10.1007/978-3-032-03325-3_35
https://doi.org/10.1007/978-3-032-03325-3_36
https://doi.org/10.1007/978-3-032-03325-3_27
https://doi.org/10.1007/978-3-032-03325-3_34


27Expectation Value Estimation 

Estimating an expectation value of a quantum state |ψ for an operator H is defined 
as the task of estimating 

Hψ = ψ |H | ψ

where H is either a Hermitian or unitary operator. For Hermitian operators, this is 
often referred to as “measuring the observable H . ”  

Note: The symbol H is also used to denote the Hadamard gate in quantum com-
puting. Although this notation is standard in the literature, we alert the reader to 
this potential source of confusion and clarify usage whenever necessary. 

There are several standard techniques for expectation value estimation. We 
summarize three widely used procedures in Table 27.1.

Pauli Diagonalization 

Pauli Diagonalization is the most widely used method in NISQ algorithms. The 
procedure does not require any ancilla qubits. 

We begin by considering an arbitrary Hermitian matrix H . Since H is Hermi-
tian, it can be diagonalized as H = V †DV , allowing us to rewrite the expectation 
value as 

H ψ ψ |H |ψ = ψ |V †DV |ψ = ψ D ψ = 
i 

Dii i|  2

where ψ = V | ψ . If we have access to a procedure to apply V , we can prepare 
ψ , sample measurement outcomes in the diagonal basis of D, and estimate the
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Table 27.1 Summary of 
various techniques for 
expectation value estimation 

Procedure Sample complexity Ancillae 

Pauli diagonalization O 1 2 None 

Hadamard test O 1 2 1 

Phase estimation O(1 ) O(log 1 )

probability distribution 

p(i) = ψ M † 
i Mi ψ

by sampling bitstrings from ψ to get an estimate p̃(i) of p(i). The expectation 
value can then be approximated as 

ψ |H |ψ ≈ 
i 
Diip̃( i)

However, in practice, this is very unlikely to be feasible in general since V and 
Dii may not be computable efficiently, or an efficient procedure to implement V 
on a quantum computer may not be available. 

Fortunately, in problems arising in quantum simulation, H can be expressed 
as a linear combination H = 

j 
αjH j, where αj ∈ C, Hj ∈ C2n ×2n of simpler 

operators Hj in the form of strings of Pauli gates or operators, often referred to as 
Pauli strings. An example of a Pauli string Hj is 

Hj = I ⊗ X ⊗ Y ⊗ I ⊗ Z

These sums are also typically sparse, i.e., contain relatively few terms compared 
to the dimension of the problem. Replacing H with its additive decomposition 

j 
αjHj, we get 

Hψ = ψ |H |ψ = ψ | 
j 

αjHj|ψ = 
j 

αj ψ |Hj|ψ

where 

Hex = σa ⊗ σb ⊗ .  .  .  ⊗ σn = ⊗
j
k

σk

such that σk ∈ {I , X , Y , Z} as σ0,  σ1,  σ2,  σ3 = I ,X , Y ,Z respectively. Using the 
eigendecompositions of individual Pauli gates, σk = V † 

k DkV k , provided in Table 8,
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this may be transformed into 

H ψ = 
j 

αj ψ |Hj|ψ = 
j 

αj ψ | ⊗
j 

σk |ψ 

= 
j 

αj ψ | ⊗
j 
V † 
k DkVk |ψ = 

j 

αj ψj ⊗
j 
Dk ψj 

= 
j 

αj ψj Dj ψj = 
i j 

αjDjii i| j
2

In the simplest setting, given |ψ , the procedure consists of 

(i) Preparing the states ψj by applying the (known) operators ⊗ 
j 
k 

V k on the state 

|ψ . 
(ii) Sampling bitstrings in the computational basis. 

(iii) Computing the double sums over i and j. 

To compute the terms Djii we first define a bitstring whose bits are set to 1 for 
each operator σk = I in Hj and 0 otherwise, from left to right in the same order 
as the Kronecker product order of Hj. Using the same example Pauli string Hex 

above, we obtain 

Dkii can be computed using the parity (number of 1’s), , of the bitstring 
obtained from a bitwise AND operation (denoted as &) on the measured bitstring 
i and , i.e., 

Using the same example, we consider the case where we sample a bitstring 
l = bin(21) = 10101 from ψ . This leads to = parity(10101 & 01101) = 
parity(00101) = 2, and therefore Dexll = 1. 

We now consider another example of a quantum state |φ = α|00 + β|01 + 
γ |10 + δ|11 and an operator 

H = H1 + H2
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where 

H1 = aX ⊗ Y

H2 = bZ ⊗ I

Using the eigendecompositions of Pauli gates, we obtain 

H1 = aHZH ⊗ SHZHS †

H2 = bZ ⊗ I

Therefore, the states φ1 = H ⊗ HS†| φ and φ2 = Z ⊗ I | φ are prepared on 
a quantum computer and sampled. 

Suppose that a total of 1024 samples are obtained (512 each for φ1 and φ2 
with the following statistics: 

Measured string i # of samples for φ1 # of samples for φ2 

|00 105 76 

|01 253 97 

|10 82 312 

|11 72 27 

The bitstrings  and corresponding to H1 and H2 are then computed by 
setting bits to 1 in each position where a Pauli gate is applied: 

We may compute the entries Dkii as 

Measured string i pl1 pl2 

|00 00 00 1 1 

|01 01 00 −1 1 

|10 10 10 −1 −1 

|11 11 10 1 −1 

The expectation value may then be computed as 

H φ = a 
105

512 
+ (−1) 

253

512 
+ (−1) 

82

512 
+ 

72 

512
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+ b 
76

512 
+ 

97 

512 
+ (−1) 

312

512 
+ (−1) 

27

512 

Typically, quantum computing libraries automatically perform these compu-
tations for sums of Pauli strings. The following code compares the Qiskit 
implementation of expectation value computations with a custom implementation. 
The code first samples quantum states ψ for each Pauli string and post-processes 
the bitstrings. These values are then compared with Qiskit’s built-in procedure for 
computing expectation values exactly: 

#!/usr/bin/python3 

import numpy as np 

import random 

from qiskit import QuantumCircuit, QuantumRegister, ClassicalReg-

ister 

# from qiskit_aer import UnitarySimulator, StatevectorSimulator 

# from qiskit.primitives import Estimator, Sampler 

from qiskit_aer.primitives import SamplerV2 as Sampler, Estima-

torV2 as Estimator 

from qiskit.quantum_info import SparsePauliOp 

from qiskit.circuit.library import SGate 

from qiskit.circuit.random import random_circuit 

# Create a random quantum circuit 

seed = 12345 
n = 4 
circ = random_circuit(n, n*2, seed=seed) 

# Define some random observables as Pauli operators 

num_paulis = 10 
ops = [] 
pauli_pool = [’I’,’X’,’Y’,’Z’] 
for _i in range(num_paulis): 

pauli_string = ” 
for _j in range(n): 

pauli_string = pauli_string + pauli_ 

pool[random.randint(0,3)] 

ops.append(SparsePauliOp(pauli_string,random.random())) 

# Combine into one operator 

H = sum(ops) 

# Create circuits corresponding to Pauli string diagonalizations: 

# Applying the appropriate eigenvectors to each qubit for the cor-

responding Pauli gate in the Pauli string
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obs_circs = [] 
for pauli_string in H.to_list(): 

pauli_circ = QuantumCircuit(n) 
for index, pauli in enumerate(pauli_string[0]): 

if pauli==’X’: 

pauli_circ.h(n-1-index) 

elif pauli==’Y’: 

pauli_circ.append(SGate().inverse(),[n-1-index]) 

pauli_circ.h(n-1-index) 

obs_circs.append((pauli_circ,pauli_string)) 

# Sample these circuits and package into a tuple with 

# quasiprobabilities, Pauli strings, and coefficients of the Pauli 

strings 

sampler = Sampler() 
qp_ps_coeff = [] 
for obs_circ in obs_circs: 

newcirc = circ.compose(obs_circ[0]) 
newcirc.measure_all() 

job = sampler.run([newcirc.decompose()],shots=10_000_000) 
result = job.result()[0].data.meas.get_counts() 
# Get the quasi-probabilities from the result 

# The result is a dictionary with bitstrings as keys and their 

counts as values 

total_counts = sum(result.values()) 
for key in result: 

fresult[key] = result[key] / total_counts 

fq_p = result 
fqp_ps_coeff.append((q_p,obs_circ[1][0],obs_circ[1][1])) 

# Estimate the expectation values 

evs = [] 
for _i in qp_ps_coeff: 

# Unpack tuple 

qp = _i[0] 
ps = _i[1] 
coeff = _i[2].real 

# Create bitstring from Pauli string 

# Any qubit with a Pauli applied will be marked as 1 in the bitstring 

pauli_bs = ”
for _j in ps:

if (_j == ’I’):

pauli_bs = pauli_bs + ’0’

else:
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pauli_bs = pauli_bs + ’1’ 
print(f’Pauli string: {ps} Bitstring: {pauli_bs}\n’) 

print(f’Quasi-probs: {qp} \n’) 

# Expectation value is computed as a sum over all the 

# quasiprobabilities of the sampled bitstrings 

ev = 0 
for index_bs in qp: 

# Get quasiprobability 

_k = qp[index_bs] 
print(’Index BS: ’ + index_bs) 
print(’Pauli BS: ’ + pauli_bs) 
# Perform bitwise AND with these two 

# This will tell us how many -ve signs are being picked up 

bs_mask_ps = f’{{0:0{n}b}}’.format(int(index_bs,2) & 

int(pauli_bs,2)) 

print(’Bitwise AND: ’ + bs_mask_ps) 
# Compute parity of this final bitstring 

# This will give the overall number of -ve signs 

parity = 1 
for _l in bs_mask_ps: 

if _l==’1’: 

parity = parity*-1 
print(f’Parity: {parity}’) 

print() 

# Compute the contribution of the sampled bitstring + its 
quasiprobability 

# towards the expectation value 

ev = ev + parity * _k 

evs.append(coeff * ev) 

print() 

print() 

# Print out expectation values of each Pauli string 

print(np.array(evs)) 

# Estimate observables using Qiskit’s Estimator method and compare 

estimator = Estimator() 
job = estimator.run([(circ.decompose(),o) for o in H]) 

qiskit_estimator_result = [_result.data.evs for _result in

job.result()]

print(qiskit_estimator_result)

# Compute total error for each expectation value
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print(f’Total error for each expectation value: 

{np.abs(np.sum(evs) - np.sum(qiskit_estimator_result))}’) 

The final line of output is the difference between the two methods: 

Total error for each expectation value: 0.00017310799751490968 

which is within the expected bounds for sampling error (scales as O 1 2 ). 
It may be possible for various Pauli strings to commute. As an example, 

consider the Pauli strings 

H1 = α1I ⊗ Z ⊗ X , H2 = α2 X ⊗ Z ⊗ I

With the mixed-product property of Kronecker products in mind, we note that 
each Pauli matrix in the first Pauli string commutes with the corresponding Pauli 
matrix in the second Pauli string, i.e., 

[I , X ] = [Z, Z] = [X , I ] = 0

implying that these two Pauli strings commute. Therefore, they must share 
the same eigenvectors V1, V 2. Using this fact, instead of preparing and sam-
pling ψ1 = V1|ψ , ψ2 = V2|ψ individually for these two Pauli strings, 

one may simply sample ψ1,2 = V1|ψ = V2|ψ and then compute 

i (α1D1ii + α2D2ii) i| 1,2 

2
for better sampling efficiency. This is more appar-

ent by diagonalizing H1 and H2: 

H1 = α1I ⊗ Z ⊗ HZH = α1HH ⊗ Z ⊗ HZH

H2 = α2HZH ⊗ Z ⊗ I = α2HZH ⊗ Z ⊗ HH

H1 + H2 = H (α1I + α2Z)H ⊗ (α1Z + α2Z) ⊗ (α 1Z + α2I)

Note that for Pauli strings to commute, each Pauli matrix in the first string does 
not need to commute with the corresponding Pauli matrix in the second string. As 
an example, consider 

H3 = α3Z ⊗ Y ⊗ Z, H4 = α4X ⊗ Z ⊗ I

Not every individual Pauli matrix in the first stringcommutes with the second 
string, e.g., [Z, X ] = 0. Regardless, H3 and H4 do commute: 

[Z ⊗ Y ⊗ Z, X ⊗ Z ⊗ I ] = [Z, X ] ⊗ [Y , Z] ⊗ [Z, I ] = [Z,X ] ⊗ [Y , Z] ⊗ 0 = 0
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Efficiently partitioning Pauli strings into groups of commuting strings is an 
active area of research. A recent implementation and review can be found in [1]. 

There are other methods in the literature to estimate expectation values using 
various decompositions and measurement bases [2]. However, the Pauli string 
decomposition is used most commonly due to its simplicity and generality. 

Hadamard Test 

We now introduce the Hadamard test for estimating the expectation value ψ |U |ψ 
of a unitary U ∈ C2n×2 n . Since U is unitary rather than Hermitian, ψ |U |ψ ∈ C, 
i.e., the expectation value is no longer guaranteed to be real. 

The real and imaginary parts of the expectation value may be estimated using 
the following circuits shown in Fig. 27.1. 

To see how this works, consider a state |ψ . Adding the ancilla qubit, we get 

|0 ψ 

Applying the first Hadamard gate, we obtain 

(H ⊗ I )|0 ψ = 
1√
2 
(|0 + |1 )|ψ 

Subsequently, after applying the controlled version of U we get 

(cU ) 
1 √
2 
(|0 + |1 )|ψ = (|0 0|I + |1 1 |U )

1√
2 
(|0 + |1 )|ψ 

= 
1√
2 
(|0 ψ + |1 U |ψ )

and finally, applying the final Hadamard gate yields 
1 √
2 
(H ⊗ I)(|0 ψ + |1 U |ψ ) = 1

2 
((|0 + |1 ψ ) + (|0 − |1 )U |ψ ) 

|φ = 1

2
|0 (|ψ + U |ψ ) + 1

2
|1 (|ψ − U |ψ )

Fig. 27.1 Hadamard test circuits. Left: real part; right: imaginary part 
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Now we analyze the probability of measuring the ancilla qubit in the state |0 : 

p(|0 ) = φ||0 0||φ 

= 1

2 
0| ψ | + ψ |U † + 1

2
|1 ψ | − U † ψ | (|0 0 |)1

2
|0 (|ψ + U |ψ ) 

+1

2
|1 (|ψ − U |ψ ) 

= 1

4 
0| ψ | + ψ |U † 1

4
|0 (|ψ + U |ψ ) 

= 1

4 
ψ | + ψ |U † (|ψ + U |ψ )

= 1

4 
ψ ||ψ + ψ |U †U |ψ + ψ |U |ψ + ψ |U † |ψ

= 1

4 
(2 + 2Re ψ |U |ψ )

Using the same process, for the second circuit one arrives at the final result 
p(|0 ) = 1

2 + 1 
2 Im( ψ |U |ψ ). 

Like the Pauli diagonalization method, the sampling complexity of this method 
scales as O 1 2 . 

We now provide an example code performing the Hadamard test on a unitary 
operator. The operator in this example is the S gate, with the matrix representation 

S = 1 0  
0 i 

This operator has been chosen for this example since the expectation values are 
purely real and imaginary for the quantum states |0 and |1 , i.e., 

0|S|0 = 1 

1|S|1 = i 

In our example, we will rotate the state |0 toward the state |1 and back to |0 
in increments using a rotation about Y . This can be achieved using the RY (θ ) gate 
which has a matrix representation 

RY (θ ) = cos θ − sin θ 
sin θ cos θ

In summary, we will compute the expectation value 

ψθ |S|ψθ 0|RY (θ )†SRY (θ )| 0
using the Hadamard test and compare it with values computed classically. The 
results are plotted in Fig. 27.2:
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Fig. 27.2 Results of Hadamard test example code 

#!/usr/bin/python3 

import numpy as np 

import matplotlib.pyplot as plt 

from qiskit import QuantumCircuit, QuantumRegister, ClassicalReg-

ister 

from qiskit.primitives import StatevectorSampler 

from qiskit.circuit.library import SGate 

from qiskit.circuit import Parameter 

# Since we will be executing this circuit for various alpha values 

# define alpha as a parameter 

alpha = Parameter(’alpha’) 
sweeps = 20 
_alpha = np.linspace(0,np.pi*2, sweeps) 

params = np.vstack([_alpha]).T 

# Number of shots to estimate values 

shots1 = 1000 
shots2 = 100_000 

# Set up classical and quantum registers

qregister = QuantumRegister(2)
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cregister = ClassicalRegister(1,’classical’) 

# Create Hadamard test circuit for real part 

re_circuit = QuantumCircuit(qregister,cregister) 
re_circuit.ry(alpha,1) # Prepare |psi_alpha> state 

re_circuit.h(0) 

re_circuit.append(SGate().control(),[0,1]) 

re_circuit.h(0) 

re_circuit.measure(0,0) 

re_circuit.draw() 

# Create Hadamard test circuit for imaginary part 

im_circuit = QuantumCircuit(qregister,cregister) 
im_circuit.ry(alpha,1) # Prepare |psi_alpha> state 

im_circuit.h(0) 

im_circuit.append(SGate().inverse(),[0]) 

im_circuit.append(SGate().control(),[0,1]) 

im_circuit.h(0) 

im_circuit.measure(0,0) 

im_circuit.draw() 

# Sample circuits over various alpha values 

sampler = StatevectorSampler() 
# Define primitive unified blocks for real and imaginary circuits 

pub1 = (re_circuit, params) 

pub2 = (im_circuit, params) 

# Run two jobs with different numbers of shots 

job1 = sampler.run([pub1, pub2],shots=shots1) 

job2 = sampler.run([pub1, pub2],shots=shots2) 

# Extract p(0) from results for real and imaginary circuits 

re1 = [(job1.result()[0].data.classical.get_counts(i)[’0’]/ 

shots1 * 2 - 1) for i in range(sweeps)] 

im1 = [(job1.result()[1].data.classical.get_counts(i)[’0’]/ 

shots1 * 2 - 1) for i in range(sweeps)] 

re2 = [(job2.result()[0].data.classical.get_counts(i)[’0’]/ 

shots2 * 2 - 1) for i in range(sweeps)] 

im2 = [(job2.result()[1].data.classical.get_counts(i)[’0’]/ 

shots2 * 2 - 1) for i in range(sweeps)] 

# Get the exact solution we expect to verify results 

# Function returning Ry matrix for a theta value

def ry_matrix(theta):

return np.array([[np.cos(theta/2), -np.sin(theta/

2)],[np.sin(theta/2), np.cos(theta/2)]])
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# Create statevectors for various theta values 

psi_theta = [] 
for theta in _alpha: 

psi_theta.append(ry_matrix(theta)@[[1],[0]]) 

# Compute expectation values using matrix-vector multiplication 

s_matrix = [[1,0],[0,1j]] 
evs = [] 
for psi in psi_theta: 

evs.append(psi.T.conj() @ s_matrix @ psi) 

# Plot results 

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, sharey=True) 

plt.xlabel(r’$\alpha$’) 

ax1.set_ylabel(r’$Re( \langle \psi_\alpha | S | \psi_\alpha \ran-

gle)$’) 

ax2.set_ylabel(r’$Im( \langle \psi_\alpha | S | \psi_\alpha \ran-

gle)$’) 

ax1.scatter(_alpha,re1,color=’r’,marker=’o’) 

ax2.scatter(_alpha,im1,color=’r’,marker=’o’) 

ax1.scatter(_alpha,re2,color=’b’,marker=’x’) 

ax2.scatter(_alpha,im2,color=’b’,marker=’x’) 

ax1.plot(_alpha,np.array(np.real(evs)).flatten(),color=’k’) 

ax2.plot(_alpha,np.array(np.imag(evs)).flatten(),color=’k’) 

ax1.legend([’1000 shots’,’100,000 shots’,’Exact’],loc=9)

plt.show()

Quantum Amplitude Estimation 

Unlike the previous methods, the sample complexity of the amplitude estimation 
method scales as O(1 ), achieving the so-called Heisenberg limit—the optimal 
scaling permitted in general by quantum mechanics. 

To motivate the method, let’s first revisit the Hadamard test from the previous 
section. Denoting a unitary that prepares |ψ as Uψ , and the circuit in (without 
the measurement operation) as UHad , we combine the two to define 

A = UHad U ψ

Applying this operation to the state |0 0|⊗n we get 

A|0 0|⊗n = |φ = 
1

2
|0 (|ψ + U |ψ ) + 1

2
|1 (|ψ − U |ψ )
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This state has a clear separation of “good” and “bad” states and can be restated 
as a sum 

|φ = φgood + | φbad

such that 

ψgood |ψ = ψgood |ψbad = √
p 

ψbad |ψ = ψbad |ψbad = 1 − p 

where φgood = |0 · and |φbad |1 . 
Using the amplitude estimation procedure outlined in Chap. 24, Amplitude 

Amplification and Estimation., we may estimate p (and by extension 1 
2 + 

1 
2 Re( ψ |U |ψ )) up to precision ε with a complexity of O(1 ). 

The amplitude estimation procedure requires the construction of the reflection 
operator Rgood . Recall that the amplitude amplification procedure requires marking 
the good states and the |0 0 ⊗n state with a −ve sign, i.e., the operators Sgood and 
S0, respectively, need to be constructed. 

For this problem we see a clear separation between the good and bad states from 
the ancilla qubit. This boils down to marking |0 · with a −ve sign. Therefore, 
we may construct the operator Sgood as 

S|φ |φ = (XZX ) ⊗ (I)⊗n |φ = −1

2
|0 (|ψ + U |ψ ) + 1

2
|1 (|ψ − U |ψ )

The construction of S0 is provided in Chap. 24: Amplitude Amplification and 
Estimation. Using the standard approach of phase estimation, we can now estimate 
1 
2 + 1 

2 Re( ψ |U |ψ )) up to precision . As shown in the previous section on the 
Hadamard test, we can extend this method to estimate 1 

2 + 1 
2 Im( ψ |U |ψ ), com-

pletely determining the expectation value. This procedure has an overall sampling 
complexity of O(1) and circuit depth O(1 ). This leads to an overall complexity 
of O(1 ), which is optimal and is known as the Heisenberg limit. 

SWAP Test 

In this chapter, we have covered various techniques for computing expectation 
values of the form ψ |H |ψ . In some cases, however, we may be interested in 
computing the overlap between two quantum states: 

ψ |φ
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If the state preparation routines Uψ and Uφ are known, one can compute the 
overlap using the Hadamard test by estimating the quantity: 

0|U † 
ψ Uphi|0 

Another convenient way to estimate this overlap is to use a slightly modified 
version of the Hadamard test, known as either a Hadamard overlap test or a SWAP 
test. To build an intuition for this operation, consider two quantum registers, each 
containing n qubits. 

|ψ φ 

Applying the SWAP gate (or more precisely, a sequence of pairwise SWAPs) 
exchanges the content of the two registers: 

USWAP|ψ φ = |φ ψ

We now apply the Hadamard test to this unitary operator USWAP , treating it as 
the controlled operation. This measures the expectation value: 

ψ φ|USWAP|ψ φ = ψ φ||φ ψ = ψ |φ 2

Note that this yields the modulo squared value of the desired expectation value 
(and does not have an imaginary part), unlike the Hadamard test. 

The circuit for the SWAP test is given in Fig. 27.3. 
Note that the SWAP test may be extended to measure expectation values of the 

form 

ψ |U |φ

Fig. 27.3 Quantum circuit 
for the SWAP test 
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This can be achieved by performing a SWAP test of the form 

ψ φ|(U ⊗ U )USWAP|ψ φ

ψ φ|(U ⊗ U )|φ ψ

ψ |U |φ 2 
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28Hamiltonian Simulation Techniques 

Hamiltonian simulation is the task of approximating the unitary operator U ≈ 
e−iHt acting on a quantum state, where H is a Hermitian matrix and thus U is uni-
tary. This subroutine is fundamental in quantum computing, with applications in 
quantum chemistry, condensed matter physics, and as a core routine in algorithms 
such as the HHL quantum linear system algorithm [1]. For quantum chemistry 
problems, the Jordan–Wigner [2] or Bravyi–Kitaev [3] transformations can be 
used to map the second quantized operators of an atom or molecule (a Fermionic 
Hamiltonian) to qubit operators and unitary operations of quantum computers [4]. 

Hamiltonian simulation encodes the time evolution of a quantum state governed 
by the Schrödinger equation: 

d 

dt 
| (t) =  −iH (t)| (t)

where the Planck constant is absorbed into the Hamiltonian H (t). For time-
independent H , the solution is 

| (t) = e−iHt | (0 ) .

Thus, simulating a closed, time-independent quantum system is equivalent to 
solving a homogeneous first-order system of ordinary differential equations. 

Several methods exist for Hamiltonian simulation, each suited to different 
settings and resource constraints. The most important approaches are product 
formulas, Taylor series expansions using linear combinations of unitaries, and 
quantum signal processing. These techniques offer a range of trade-offs in terms 
of efficiency, implementation overhead, and error scaling.
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The Hamiltonian simulation problem for closed quantum systems is thus 
formally solved by the Schrodinger equation, which is a homogeneous sys-
tem of first-order differential equations. The first quantum algorithm for this 
problem was proposed by [5] using the Trotter method. Subsequent work 
improved the query complexity to O d2 Hmax t log d2 Hmax by using 
a linear combination of unitaries arising from a truncated Taylor series [6]. 
The current state-of-the-art is quantum signal processing [7] which achieves 
a query complexity of O tdHmax + log 1

ε / log log 1 for d -sparse oracles, 
or O t H +  +  log 1 / log log 1 with block-encoded oracles. Additional 
approaches, such as randomized evolution methods [8, 9], have also been devel-
oped. 

Trotter Methods 

The Hamiltonian simulation problem is relatively straightforward to solve using 
Trotter methods. This requires decomposing the Hamiltonian into a sum of easily 
exponentiated summands Hj: 

H = 
j 
H j

These summands Hj are often chosen to be Pauli strings, since various physical 
Hamiltonians can be expressed in this form. This decomposition can be used in 
various Trotter formulas to obtain an approximation of e−iHt . The order of the 
Trotter formula impacts the simulation errors. Grouping commuting Pauli strings 
often leads to lower error rates. Trotter methods are discussed in detail in Chap. 21: 
Trotterization. 

Taylor Series Approximation 

The Taylor series approach approximates a matrix exponential with a matrix 
polynomial, which can be implemented as a sum of monomials using the lin-
ear combination of unitaries (LCU) technique. Since U = e−iHt is analytic, it can 
be approximated by a truncated Taylor series. This method starts by decomposing 
H as a sum of unitaries Hl [10], similar to the product formula approach: 

U = e−iHt = e−iHt/r 
r = (U r)r

where 

Ur ≈ Ûr = 
K 

k=0 

L 

l1,...,lk=1 

(−it/r )k

k! αl1 .  .  .  αlk Hl1 . . .Hlk .
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Choosing K = O log( )
log log( )

achieves precision U − Ûr 
r 

2 
≤ , yield-

ing exponential improvement over Trotter methods. If Hl are Pauli strings, their 
products Hl1 .  .  .Hlk remain unitary. Therefore, the double summation may be 
implemented using the LCU subroutine, which requires ancilla qubits and has 
a non-zero probability of failure. We note that if the LCU subroutine is imple-
menting (approximately) unitary operations its success probability can be boosted 
to O(1) using a subroutine known as Oblivious Amplitude Amplification [11], 
which—unlike regular amplitude amplification—boosts amplitudes linearly rather 
than quadratically. 

The overall algorithm simulates a d -sparse Hamiltonian H for time t to a pre-

cision of ε with O τ log2( )
log log( )

queries to H , where τ = d2 Hmax t, which is 

near-optimal in time. However, this approach requires additional ancilla qubits and 
a large number of controlled operations. The quantum signal processing method, 
presented in the next section, requires significantly fewer ancillae and controlled 
operations. Neither method is practical on pre-fault-tolerant quantum computers. 

Quantum Signal Processing 

The quantum signal processing (QSP) method also approximates a matrix expo-
nential with a matrix polynomial, but instead of summing monomial terms, it uses 
the QSP framework, requiring only two additional ancilla qubits. QSP achieves 
optimal scaling by simulating a d -sparse Hamiltonian for time t with error using 

O td Hmax 
log(1 ) 

log log(1 ) queries to H [7]. 

The method employs a complex polynomial approximation of e−iHt . By Euler’s 
formula, 

e−iHt = cos(iHt) − sin (iHt)

cos(iHt) and sin(iHt) are -approximated using the Jacobi–Anger expansion: 

cos(xt) ≈ Pcos(x) = J0(t) + 2 
k 

k=1 
(−1)kJ2k (t) T2k(x)

sin(xt) ≈ Psin(x) = 2 
k 

k=0 
(−1)kJ2k+1(t)T2k+ 1(x)

where Ji(x) is the ith order Bessel function and Ti(x) is the ith Chebyshev 
polynomial of the first kind with a choice of k = 1 

2 r 
e 
2 |t|, 5 4 . Implement-

ing these polynomials using QSP requires choosing a truncation error of ε/4 
and rescaling by a factor of 1 

1+ 4 to ensure that both Pcos(x) + Psin(x) ≤
1 and Pcos(x) + Psin(x) − eix ≤ . This approach achieves optimal scal-
ing in t by simulating a d -sparse Hamiltonian for time t with error ε using 
O td Hmax 

log(1 ) 
log log(1 ) queries to H [7].
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Since the QSP implementation of cos(iHt) and sin(iHt) is valid for t ≥ 0 and 
positive-definite H , more general cases can be handled by using block-encoding of 
H and defining H+ = 12 (H /α + I ), where α is the subnormalization factor of the 
block encoding. The operator H+ is positive-definite and the evolution of e−2iH+αt 

is equivalent to e−iHt up to a global phase factor. 
The techniques outlined in this chapter are categorized as digital Hamilto-

nian simulation, since they realize the action of the Hamiltonian as a sequence 
of discrete steps. Analog methods directly map the Hamiltonian to an equiva-
lent physical system. These methods are not generally applicable to gate-based 
quantum computers and are beyond the scope of this book. 

We discuss the solution of non-unitary systems of ordinary differential equa-
tions in more detail in Chap. 32, Quantum Ordinary Differential Equation Algo-
rithms: Block-Matrix Algorithms, and Chap. 33, Quantum Ordinary Differential 
Equation Algorithms: Time-Marching Algorithms. 

The no-fast-forwarding theorem places a lower bound on the asymptotic com-
plexity of Hamiltonian simulation, establishing that Hamiltonian simulation cannot 
be performed in sublinear time in general. The proxy problem for this proof is the 
problem of computing the parity of a string of bits [12]. 

Hamiltonian simulation has great potential for speeding up scientific and 
engineering computations. Homogeneous linear systems of differential equations 
can be transformed into a system of first-order differential equations using a 
transformation known as “Schrodingerization,” which can then be solved using 
Hamiltonian simulation techniques. The speedups for quantum chemistry itself 
can be immense, allowing ab initio computation of larger systems with higher 
accuracy. While density functional theory (DFT) is a widely used semi-empirical 
method for ab initio calculations, it relies on controlled approximations and usually 
can only provide ground-state solutions, limiting its application. Direct quantum 
simulations can provide more accurate results and can be used for multiscale mod-
eling to unlock the interesting physics arising from the excited states of molecules 
and condensed matter, such as crystals. 

To realize the exponential speedups offered by quantum computers for Hamil-
tonian simulation, efficient implementations of oracles or block-encodings need to 
be developed for problems of practical interest. Furthermore, error rates need to 
be low and coherence times must be large in quantum devices to extract useful 
results. 
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29Eigenvalue Problems 

The estimation of eigenvalues is a significant application of quantum comput-
ers, with implications for quantum chemistry (ground and excited states and their 
energies), materials science, and various problems in physics. Among some of the 
well-known algorithms are the Variational Quantum Eigensolver (VQE), quan-
tum Krylov subspace methods, and Quantum Phase Estimation (QPE). VQE and 
related variational algorithms are discussed in Chap. 36: Notable Variational Algo-
rithms: VQE, QAOA, and VQLS. QPE has been presented in Chap. 20: Quantum 
Phase Estimation. This chapter focuses on quantum Krylov methods for eigenvalue 
problems. 

Krylov Methods 

Consider a problem where a quantum state |ψ0 can be time-evolved by the Hamil-
tonian H as e−iHt . By choosing t = {t0, t1,  ..tm} where ti+1 = ti + t, one can 
build a Krylov subspace 

ψ0|, e−iH t |ψ0 , e−iH 2 t |ψ0 , e−iH 3 t |ψ0 ,  .  .  . = |ψ0 , |ψ1 , |ψ2 , |ψ3 , . . .}

Expectation values of the form ψi|H ψj and ψi|ψj are then estimated to form 
the generalized eigenvalue problem: 

H̃ φi = λiSφi
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where 

S = 

⎛ 

⎜⎝ 
ψi|ψi ψi|ψj · · ·  
ψj|ψi ψj|ψj 

... 
. . .

⎞
⎟⎠

and 

H̃ = 

⎛ 

⎜⎝ 
ψ0|H |ψ0 ψ0|H |ψ1 · · ·  
ψ1|H |ψ0 ψ1|H |ψ1 

... 
. . .

⎞
⎟⎠

Note that S and H̃ are symmetric. The elements of S and H̃ may be computed 
using techniques presented in Chap. 27: Expectation Value Estimation. 

The lowest generalized eigenvalue corresponds to the minimum eigenvalue in 
the subspace spanned by {|ψi . However, the generalized eigenvalue problem 
arising from this subspace construction method is often ill-conditioned, and a 
dynamical mode decomposition (DMD) method has been proposed to improve 
numerical stability [1, 2]. 

In some cases, a good approximation of the relevant subspace may already be 
available, and the subspace vectors |ψ1 ,  .  .  .  can be chosen directly rather than 
generated via the Krylov method. More generally, an arbitrary subspace can be 
constructed by other means as well. 

Approximate eigenvalue estimation and eigenstate preparation are central appli-
cations of quantum computers in physics and chemistry and constitute an active 
area of research. Other notable techniques, such as QCELS [3], quantum imaginary 
time evolution [4], and sample-based quantum diagonalization [5], are beyond the 
scope of this book. 

References 

1. Y. Shen et al., Estimating eigenenergies from quantum dynamics: a unified noise-resilient 
measurement-driven approach (2023). arXiv:2306.01858. https://doi.org/10.48550/arXiv.2306. 
01858 

2. Y. Shen et al., Efficient measurement-driven eigenenergy estimation with classical shadows 
(2024). arXiv:2409.13691. https://doi.org/10.48550/arXiv.2409.13691 

3. Z. Ding, L. Lin, Even shorter quantum circuit for phase estimation on early fault-tolerant quan-
tum computers with applications to ground-state energy estimation. PRX Quantum 4(2), 020331 
(2023). https://doi.org/10.1103/PRXQuantum.4.020331 

4. M. Motta et al., Determining eigenstates and thermal states on a quantum computer using quan-
tum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020). https://doi.org/10.1038/s41 
567-019-0704-4 

5. J. Robledo-Moreno et al., Chemistry beyond exact solutions on a quantum-centric supercom-
puter (2024). https://doi.org/10.48550/ARXIV.2405.05068

http://arxiv.org/abs/2306.01858
https://doi.org/10.48550/arXiv.2306.01858
https://doi.org/10.48550/arXiv.2306.01858
http://arxiv.org/abs/2409.13691
https://doi.org/10.48550/arXiv.2409.13691
https://doi.org/10.1103/PRXQuantum.4.020331
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.48550/ARXIV.2405.05068


30Quantum Linear System Algorithms: 
Direct Methods 

Quantum linear system algorithms (QLSA) are central to the potential utility 
of quantum computing for scientific and engineering applications, as linear sys-
tems are ubiquitous in these fields. While classical algorithms for solving an 
N -dimensional linear system Ax = b require at least O(N ) time to produce the 
full solution vector x, many engineering and scientific applications only need a few 
specific properties, such as the peak stress in a structure or the lift coefficient of an 
airfoil. QLSAs promise to bypass this bottleneck by directly preparing a quantum 
state whose amplitudes encode the solution, often in time polylogarithmic in N , 
potentially enabling the efficient extraction of these observables. 

In this chapter, we focus on direct QLSAs, outlining the foundational Har-
row–Hassidim–Lloyd (HHL) algorithm [1] and its subsequent refinements—Linear 
Combination of Unitaries (LCU) [2], and Quantum Signal Processing (QSP/ 
QSVT) [3], discussing their underlying assumptions, computational complexity, 
and practical limitations. 

Formally, QLSAs solve the Quantum Linear System Problem (QLSP) [1]  as  
follo ws.

Definition (Quantum Linear System Problem) Given a normalized matrix A ∈ 
C
N× N with A = 1, a vector b ∈ C N , oracle access to the entries of A, and the 

ability to prepare a quantum state |b = i bi|i 
i bi|i 2 

, the task is to prepare a quantum 

state |x̃ , such that x̃ − |x 2 ≤ , where |x = i xi|i 
i xi|i 2 

and x = A−1 b.
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Table 30.1 A summary of notable QLSAs 

Algorithm Complexity Pros Cons Notes 

HHL [1] 
(2007) 

O d2κ2 log(N ) 1 ancilla 
Short circuit 
possible 

High error κ2 → κ log κ using 
VTAA [4] 

LCU [2] 
(2017) 

O κ2poly log(κN ) Many ancillae Low error 
Complex 
circuit 

κ2 → κ log κ using 
AA [2] 

QSP/QVST 
[3] 
(2021) 

O(κ log(κN )) Few ancillae, 
near-optimal 
scaling 

QSP sequence 
required 

can be reused 

PD-QLSA [5] 
(2021) 

O
√

κ log(κN ) Near-optimal √
κ scaling 

classical scaling 

Only for SPD 
systems 

Requires upper 
bound on A 2 

DAT [6] 
(2022) 

O(κ log(N )) Optimal κ 
scaling 

Requires 
construction of 
a Hamiltonian 
for evolution 

Notes: 

• Most QLSA, including HHL, LCU, and quantum signal processing methods, 
require A to be Hermitian, or they rely on an efficient reduction of the general 
case to an equivalent Hermitian problem (e.g., using the Hermitian dilation of 
A). For non-Hermitian A, this embedding increases the problem size but enables 
the use of these algorithms. 

• Due to the normalization constraint of quantum states, |x is proportional to the 
classical solution x, and its amplitudes encode the solution information. Unlike 
classical approaches, the full solution vector is not output; instead, quantum 
algorithms enable the efficient extraction of relevant observables or sampling. 

Since quantum algorithms can operate on the entire state efficiently, QLSAs 
can yield exponential speedups in N for suitable QLSPs [1]. A summary of 
these methods is presented in Table 30.1. As discussed here, QLSAs are quan-
tum analogs of direct classical solvers—they do not depend on an initial guess 
or leverage problem-specific structure. Quantum iterative methods, which offer 
complementary strategies, are addressed in the following chapter.
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Fig. 30.1 A quantum circuit demonstrating the HHL algorithm 

HHL Algorithm 

The Harrow–Hassidim–Lloyd (HHL) algorithm was the first to demonstrate an 
exponential advantage in system size for linear systems of equations, with com-
plexity O κ2d2 log(N ) where d is the maximum number of non-zero entries in 
any row or column of A, and κ is the condition number. HHL leverages Hamilto-
nian simulation to apply controlled e−iAt operations on the input state |b . Since 
A and e−iAt share the same eigenvectors, the eigenvalues of e−iAt are kicked back 
to the control register via quantum phase estimation. Using the quantum Fourier 
transform, eigenvalues are encoded in the amplitudes of the control qubits, and 
a controlled rotation on an ancilla is used to invert the eigenvalues. The compu-
tation is then reversed to disentangle the registers, and the ancilla is measured. 
Measurement of the ancilla in the desired state indicates a successful solution. 

Since the algorithm relies on phase estimation, it suffers from poor scaling 
in precision. Variable-time amplitude amplification can improve the scaling with 
respect to the condition number κ to linear [4]. 

An overview schematic of HHL circuit is given in Fig. 30.1. 
Given subsequent improvements beyond HHL, we do not discuss them in detail 

here; instead, we proceed directly to more advanced algorithms. 

LCU-Based Methods 

Similar to Taylor series methods discussed for Hamiltonian simulation, one can 
approximate the matrix function f (x) = 1

x (since we seek an approximation of 
f (A) = A−1) using polynomial or Fourier expansions. However, unlike Hamil-
tonian simulation, which directly approximates a matrix exponential eA, matrix 
inversion requires some additional considerations. 

First, the matrix must be normalized such that A ≤ 1. This ensures that the 
singular values of A lie in the disjoint interval [−1, −1/κ]∪ [1/κ, 1 ]. This can be 
achieved by normalizing the system matrix using an upper bound α ≥ A (note 
that α A will require an interval [−1, − A /ακ] ∪ [ A /ακ, 1]).
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Second, since limx→0 f (x) →  ∞, f (x) must be approximated over a disjoint 
interval −1, − 1

κ ∪ 1
κ , 1 . Thus, a standard Taylor series approximation or a 

Chebyshev approximation is not sufficient. 
Finally, for f (A) = A−1 to hold, A must be Hermitian. In case A is not Her-

mitian, one may use Hermitian dilation to instead solve the equivalent linear 
system: 

0 A 
A† 0 

0 
x 

= b 
0 

The LCU algorithm [2] instead uses either a Chebyshev polynomial approxi-
mation P(x) = k Tk (x) ≈ 1/x, where Tk are Chebyshev polynomials of the first 
kind, or a Fourier approximation G(x) = j eitjx ≈ 1 /x, where tj ∈ R, over the 
interval x ∈ IP : [−1, −1/κ] ∪ [1/κ, 1], where κ is the condition number of the 
system. A filter function is used to handle the disjoint interval, details of which 
can be found in [2]. 

The matrix polynomial approximation P(A) or Fourier approximation G(A) 
is applied to the state |b to obtain the approximate solution A−1b ≈ P(A) b
(or A−1b ≈ G(A) b). Given a desired precision P(x) − 1x max x∈IP ≤ or 

G(x) − 1x ≤ , P(x) is a polynomial of degree O(κ log( )) and G(x) is a 
Fourier expansion with O κ log( ) terms. The terms Tk (x) can be formed 

either using matrix multiplications through qubitization or quantum walks (an 
equivalent approach for forming Chebyshev polynomials on gate-based quantum 
computers), and G(x) can be formed using Hamiltonian simulation. 

However, the application of a linear combination of unitaries incurs addi-
tional overhead in the form of ancilla qubits. The overall algorithm requires 

O d κ poly log dκ queries to a sparse access oracle for A and requires 

O d κ poly log dκN resources. Although its implementation is rather involved, 

the LCU QLSA is a seminal development for QLSAs with exponentially improved 
scaling in . 

Quantum Signal Processing 

Similar to its application in Hamiltonian simulation, the QSP method [3] addresses 
the need for matrix function approximation without requiring ancilla qubits. QSP 
works by finding a sequence of phase angles , corresponding to the desired poly-
nomial and a block-encoding of the matrix, given bounds on the condition number 
κ and the desired precision . The sequence is not specific to the problem and 
can be reused for any other problem as long as κnew ≤ κ and new ≤ . Given a 
block-encoded oracle for A, the query complexity of the algorithm is O κ log κ , 
and it requires O κ log κN resources.
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For symmetric positive-definite systems, it is possible to achieve the
√

κ scaling 
of classical solvers [5]. This is done by first defining the alternative polynomial 
approximation Q(y) ≈ y = 1

1−x over the interval y ∈ IQ : [−1, 1/κ], and defin-
ing B = I − ηA where η is chosen s.t. B ≤ 1. Given a desired precision 
Q(x) − 1x max x∈IQ ≤ , Q(x) is a polynomial of degree O

√
κ log( ) . The 

matrix polynomial approximation Q(B) is then applied to the quantum state |b . 
Below is an example of a QLSA implementation using quantum signal 

processing in Qiskit. The code inverts an anti-diagonal matrix A of the form: 

A = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

1 
0.95 

. .
. 

−0.95 
− 1

⎞

⎟
⎟
⎟
⎟
⎠

whose inverse is 

A−1 = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

−1 
−1/0.95 

. .
. 

1/0.95 
1 

⎞

⎟
⎟
⎟
⎟
⎠

.

Figure 30.2 shows the agreement of the QSP polynomial with 1/x with ≤ 
10− 6. The phase factors are obtained from the QSPPACK library: 

Fig. 30.2 Output of the example code implementing the QSP QLSA. The code demonstrates the 
agreement of the singular values of P(A) ≈ A−1 with x−1
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#!/usr/bin/python3 

import qiskit 

from qiskit import QuantumCircuit, QuantumRegister 

from qiskit import ClassicalRegister 

from qiskit.quantum_info.operators import Operator 

from qiskit_aer import Aer 

import numpy as np 

from scipy.linalg import fractional_matrix_power 

from scipy.io import loadmat 

from copy import deepcopy 

from matplotlib import pyplot as plt 

# Define the linear system: 

# As an example, solve a matrix with numbers +,- 1...0.05 on the anti-
diagonal, 

# which is a non-Hermitian matrix 

step = 0.05 
A = np.diag(np.concatenate( (np.arange(-1,0,step),np.arange(step, 

1+step,step)))) 

# Take anti-transpose of A to demonstrate the non-Hermitian matrix 

case. 

A = np.flipud(A) 
# Save matrix to check againt classical solution later 

A_orig = deepcopy(A) 
# Normalize A. If an upper bound is known, use that instead. 

# A  = A/np.linalg.norm(A) 

b = np.ones(np.shape(A)[1]) 
# Turn b into a quantum state 

b = b/np.linalg.norm(b,2) 
b_orig = deepcopy(b) 

# Hermitian Dilation: only if A is not Hermitian 

if np.any(A != A.conj().T): 
A = np.block([ 

[np.zeros(np.shape(A)),A], 

[A.conj().T,np.zeros(np.shape(A))] 

])

b = np.block([

b,

np.zeros(np.shape(b))

])

HD = True
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else: 

HD = False 

# The matrix A needs to padded to some 2^n to enable block-encoding 

if np.size(A)>1: 

A_num_qubits = int(np.ceil(np.log2(np.shape(A)[0]))) 
padding_size = 2**A_num_qubits - np.shape(A)[0] 

if padding_size > 0: 

A = np.block([ 
[A, np.zeros([np.shape(A)[0],padding_size])], 

[np.zeros([padding_size,np.shape(A)[0]]), 

np.zeros([padding_size,padding_size])] 

]) 

else: 

A_num_qubits = 1 
padding_size = 1 
A = np.array([[A,0],[0,0]]) 

# Similarly, pad b 

b = np.pad(b,(0,padding_size)) 

# Define the block-encoding of the matrix A 

# If you have an efficient circuit to realize U_A (or O_A), use it 

here 

U_A = np.block([ 
[A , -fractional_matrix_power(np.eye(np.shape(A)[0]) -

np.linalg.matrix_power(A,2),0.5)], 

[fractional_matrix_power(np.eye(np.shape(A)[0]) -

np.linalg.matrix_power(A,2),0.5), A] 

]) 

# We also need to get the block-encoding size, i.e. m, used to encode 

A in U_A  

m = int(np.log2(np.shape(U_A)[0]) - A_num_qubits) 

U_A_num_qubits = int(np.log2(np.shape(U_A)[0])) 

# Create the operator U_A in Qiskit 

operatorA = Operator(U_A) 
# Create the three registers for QSP: 

# 1) 1 Z rotation qubit 

# 2) m block-encoding ancillae 

# 3) register for b 

register_1 = QuantumRegister(size = 1, name = ’|0>’) 
register_2 = QuantumRegister(size = m, name = ’|0^m>’)

register_3 = QuantumRegister(size = U_A_num_qubits-m, name =
’|\phi>’)
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# Create a rotation circuit in the block-encoding basis 

def CR_phi_d(phi, d, register_1, register_2): 

circuit = QuantumCircuit(register_1,register_2,name = ’CR_( 
\phi \tilde {})’.format(d)) 

circuit.cx(register_2,register_1,ctrl_state=0) 

circuit.rz(phi*2, register_1) 

# Done this way for numerical stability 

circuit.z(register_1) 

circuit.cx(register_2,register_1,ctrl_state=0) 

return circuit 

# Load QSP angles 

# These angles can be obtained from the QSPPACK package 

phi_angles = np.array( loadmat(’phi_kappa_80_pts_8000_deg_ 

1999.mat’)).item()[’phi_proc’] 

phi_tilde_angles = np.zeros(np.shape(phi_angles)) 
phase_angles = phi_angles.reshape(phi_angles.shape[0]) 

# Create QSP circuit 

QSP_circuit = QuantumCircuit(register_1, register_2, register_3, 

name = ’QSP’) 
# Initialize state |b>. If you have an efficient implementation for 

b, it goes here 

QSP_circuit.initialize(b,list(reversed(register_3))) 

# First Hadamard the ancilla qubit since we want Re(P(A)) 

QSP_circuit.h(register_1) 

# Note: QSPPACK produces symmetric phase angles, so reversing phase 

angles is unnecessary 

for d, phi in reversed(list(enumerate(phase_angles))): 

QSP_circuit = QSP_circuit.compose(CR_phi_d(phi,d,register_ 
1,register_2)) 

if d>(0): 

# The endianness of the bits matters. Need to change the order 

of the bits 

if d%2: 

QSP_circuit.append(operatorA.adjoint(),list(reversed 

(register_3[:])) + register_2[:]) 
else:

QSP_circuit.append(operatorA,list(reversed(register_3[:]))

+ register_2[:])

# Apply the final Hadamard gate
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QSP_circuit.h(register_1) 

# Account for little vs. big endian 

QSP_circuit = QSP_circuit.reverse_bits() 

# Run statevector simulator 

solver=’statevector’ 

backend = Aer.get_backend(’statevector_simulator’,precision = 
"double") 

job = backend.run(QSP_circuit, shots=0) 

# Extract relevant portion of statevector 

QSP_statevector = job.result().get_statevector() 
if HD: 

P_A_b = np.real(QSP_statevector.data[int(b_ 

orig.shape[0]):(2*b_orig.shape[0])]) 

else: 

P_A_b = np.real(QSP_statevector.data[0:b.shape[0]]) 
P_A_b = P_A_b/np.linalg.norm(P_A_b) 

# Get expected result using classical solver 

expected_P_A_b = np.linalg.solve(A_orig,b_orig) 
expected_P_A_b = expected_P_A_b/np.linalg.norm(expected_P_A_b) 

# Plot QSP polynomial 

x = np.flipud(A_orig).diagonal() 
fig, ax1 = plt.subplots() 
ax1.set_title(’QSP QLSA’) 

ax1.scatter(x,P_A_b/P_A_b[-1],marker=’x’,c=’g’) 

ax1.scatter(x,expected_P_A_b/expected_P_A_b[-

1],marker=’o’,facecolors=’none’, edgecolors=’k’) 

ax1.set_ylabel(’P(x), 1/x’) 

plt.legend([’P(x)’,’1/x’],loc = 2) 
ax2 = ax1.twinx()
ax2.plot(x[:x.size//2],np.log10(np.abs((P_A_b[:x.size//

2]-expected_P_A_b[:x.size//2])/expected_P_A_b[-1])),’r’)

ax2.plot(x[x.size//2:],np.log10(np.abs((P_A_b[x.size//

2:]-expected_P_A_b[x.size//2:])/expected_P_A_b[-1])),’r’)

ax2.set_ylim(bottom=-12, top=0)

ax2.set_ylabel(’log10 |P(x)-1/x|’)

plt.legend([’error’],loc = 1)

plt.xlabel(’x’)

plt.show()
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We finally note that optimal scaling in κ has been achieved by Orsucci and 
Dunjko [5], with a query complexity of O κ log 1 using the adiabatic theorem. 

The linear scaling in κ for general linear systems implies that QLSAs can only 
provide an exponential speedup for problems with κ = O(poly logN ). Practical 
problems of interest rarely exhibit such scaling. To address this, [7] has proposed 
a quantum sparse approximate inverse (SPAI) preconditioner, which constructs 
the preconditioner by solving a least-squares problem on each row of the matrix. 
However, the SPAI preconditioner may be inefficient for many problems [8], and a 
complete implementation of the algorithm is unavailable. Alternatively, a circulant 
matrix preconditioner has been suggested in [9], but its complexity depends on the 
condition number of the preconditioner κ(M ) and the product κ M −1A .  In  the  
worst case, κ(M ) ≥ κ(A) and κ(M ),  κ  M −1A ≈ √

κ(A). A Laplacian precondi-
tioner has been proposed by Golden et al. [8] for hydrological subsurface flow to 

reduce the condition number to at most O
√
N . For certain QLSPs of the form 

(A + B)|x = | b with A B , Tong et al. [10] proposed a fast-inversion 
procedure, relevant for single-particle Green’s functions in quantum many-body 
systems. 

Several state-of-the-art quantum algorithms for inhomogeneous ordinary dif-
ferential equations rely on QLSAs as an intermediate step, which enables their 
exponential speedups [11, 12]. Numerical solutions of partial differential equa-
tions can greatly benefit from QLSAs if the condition number can be controlled. 
An iterative approach has been proposed by Raisuddin and De [13] to manage 
the condition number of the systems of equations, with possible application to a 
quantum multigrid method or a quantum domain decomposition method. We dis-
cuss quantum algorithms for ODEs and PDEs in Chap. 32, Quantum Ordinary 
Differential Equation Algorithms: Block-Matrix Algorithms, Chap. 33, Quan-
tum Ordinary Differential Equation Algorithms: Time-Marching Algorithms, and 
Chap. 34, Quantum Partial Differential Equation Algorithms. 

Since the QLSA prepares a quantum state encoding the solution, it also raises 
the question of computing practically relevant properties of the output. Clader et al. 
[7] proposed using QLSAs to compute the electromagnetic scattering cross-section 
of an arbitrary target. Montanaro and Pallister [14] noted that while the QLSA pro-
vides exponential speedup in state preparation, extracting classical properties from 
the quantum state yields only polynomial speedup for finite element problems, 
with the speedup increasing for higher dimensional cases. 

A further analysis in [15] compared classical and quantum methods for the 
heat equation, showing that direct QLSA application is never faster than classical 
algorithms. However, an approach based on amplification and random walks can 
yield quadratic speedup for d ≥ 2, and even greater speedup for higher d . The heat 
equation is especially relevant since it discretizes the Laplacian operator, which 
appears in a broad class of PDEs [16].
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31Quantum Linear System Algorithms: 
Iterative Methods 

Although the QLSAs outlined in the previous chapter demonstrate an exponential 
speedup in N , even the optimal direct QLSA scales linearly with the condition 
number κ . The linear scaling in κ implies that exponential speedup is achiev-
able only for systems with κ = O(poly logN ). Practical problems of interest 
rarely exhibit such scaling. Classical approaches to large-scale linear systems often 
exploit prior knowledge through preconditioning or iterative solvers. 

A quantum sparse approximate inverse (SPAI) preconditioner was proposed in 
[1] to resolve this issue. The approach produces the preconditioner by solving a 
least-squares problem on each row of the matrix. However, the SPAI precondi-
tioner can be inefficient for many problems [2], and a complete implementation 
remains unavailable. A circulant matrix preconditioner has been proposed by Shao 
and Xiang [3], but its complexity depends on the condition number of the pre-
conditioner κ(M ) and the product κ M −1A , which in the worst case can satisfy 
κ(M ) ≥ κ(A) and κ(M ),  κ  M −1A ≈ √

κ(A). A Laplacian preconditioner has 
been proposed by Golden et al. [2] for hydrological subsurface flow to reduce the 

condition number to at most O
√
N . Tong et al. [4] presented a fast-inversion 

procedure to solve QLSPs of the form (A + B)|x = |b where A B , target-
ing applications such as single-particle Green’s functions of quantum many-body 
systems. 

A promising alternative is to develop iterative quantum algorithms. Opti-
mal classical linear system solvers, such as the multigrid method, can achieve 
O N log 1 floating-point operations, independent of κ ,  o  r O log 1 matrix-vector 
multiplications. However, classical iterative linear system algorithms often require 
nonlinear operations (e.g., computing the L2 norm in the conjugate-gradient 
method), which necessitates ancilla qubits and/or measurement in a quantum set-
ting. As a result, many iterative methods are considered challenging for quantum
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computers. Nevertheless, some iterative algorithms—such as Jacobi, Gauss–Sei-
del, and Richardson iterations—are composed solely of affine linear operations 
and are potentially more feasible for quantum implementation. In this chapter, we 
review recent progress in developing iterative quantum linear system algorithms. 

We note that the variational quantum linear solver may be considered a 
hybrid quantum-classical “iterative” solver; however, we discuss it separately in 
Chap. 36, Notable Variational Algorithms: VQE, QAOA, and VQLS, alongside 
other variational algorithms. 

We begin by defining the quantum linear system problem in the iterative setting 
as follows. 

Definition (Iterative Quantum Linear System Problem) Let A ∈ CN × N be a given 
matrix and b ∈ C N a target vector; given any initial vector x(0) ∈ C N such that 
Ax(0) − b 2 ≤ 0 for some 0 > 0, and given quantum oracle access to the entries 

of A and procedures for preparing the normalized quantum states x(0) = i x
(0) 

i |i
x(0) 

2 

and |b = i bi|i 
b 2 

, the goal is to output a quantum state x(l) = i x
(l) 

i |i
x(l) 

2 
for some 

l, such that Ax(l) − b 2 ≤ l ≤ 0. 
For positive-definite linear systems, linear stationary iterations can be used. A 

general first-order linear stationary iteration may be defined as the affine linear 
operation: 

x(l+1) = I − τlC−1A x(l) + τ lC−1b

where C is a left-preconditioning matrix and τl is a parameter of the scheme. For 
Richardson iteration, set C = I and τl = ω, giving 

x(l+1) = (I − ωA)x(l) + ωb

Convergence requires the spectral radius ρ(R) < 1 where R = (I − ωA). This 
can be satisfied by choosing ω  <  1

λmax(A) . 
We can therefore rewrite this in terms of the block-linear system of equations 

framework in Chap. 24. As an example, for two iterations with two copy steps, we 
get the linear system: 

⎡ 

⎢⎢ 
⎢ 
⎢ 
⎣ 

I 
−R  I  

−R  I  
−I  I  

−I  I  

⎤ 

⎥⎥ 
⎥ 
⎥ 
⎦ 

⎡ 

⎢⎢ 
⎢ 
⎢ 
⎣ 

x(0) 

x(1) 

x(2) 

x(3) 

x(4) 

⎤ 

⎥⎥ 
⎥ 
⎥
⎦

=

⎡

⎢⎢
⎢
⎢
⎣

x(0)

τb
τb
0
0

⎤

⎥⎥
⎥
⎥
⎦

For l iterations and c copies, we may rewrite the large block matrix as 

Ml,c = 
l+c 

i=0 
|i i| ⊗ I − 

l 

i=1 
|i i − 1| ⊗ R − 

l+c 

i=l+1 
|i i − 1| ⊗ I
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Although this matrix is substantially larger than the original system, its condition 
number solely depends on the number of iterations l and copy steps. Furthermore, 
the number of copy steps can be chosen to be c = l − 1. With these choices, the 
condition number scales linearly with the number of iterations. 

Lemma [5] ∀ M ∈ RlN×lN s.t. Mik ∈ RN×N where Mii = I , Mi+1,i =  −  Ri,

Mji = 0 and ∀ i, j, k ∈ [1, l] ⊂ N where j i, i + 1 and Ri 1 ∀ i 

M ≤ 2, M −1 ≤ l

κM ≤ 2 l

This technique has been analyzed by Raisuddin and De [5] to arrive at the 
following result for an iterative QLSA as follows. 

Theorem Let A be a symmetric positive-semidefinite matrix and Ml,l−1 denote the 
block matrix that encodes l linear stationary iterations for the system Ax = b, starting 
from the initial guess x(0) . Then, for any ≤ 1 2 , there exists a quantum algorithm 
that prepares the normalized quantum state x(l) corresponding to l linear stationary 

iterations with an overall complexity O l poly log lN . 

This is an exponential improvement over a classical computer in the problem size 
N . Naïve application of such iterative methods will require l = O(κ ) iterations, 
which matches the scaling of direct QLSAs. However, this algorithm is intended to 
be a building block for sophisticated iterative methods that leverage the structure of 
the problem and utilize linear stationary iterations as a subroutine, e.g., multigrid 
methods, domain decomposition, and block-preconditioners. 

An iterative quantum linear system problem can be viewed as a gradient descent 
problem for the functional 

f (x) = 
1

2 
xT Ax − bT x

Algorithms for gradient descent have been proposed by [6, 7]. In particular, 
Kerenidis and Prakash [6] presented a QRAM-based algorithm for gradient descent 
on linear systems, with complexity O κ3 in the condition number and O(1 ) in 
precision, along with other parameters. 

Second-order linear stationary methods, such as the Chebyshev iteration, offer 
quadratic speedup for symmetric positive-definite systems, though no quantum algo-
rithm is known for these methods. Raisuddin and De [8] developed a procedure for 
multigrid operations for finite element problems using block-matrix multiplication 
(see Chap. 26: Matrix-Vector Multiplications and Affine Linear Operations) to apply 
the sequence of affine linear operations. However, the success probability of the 
algorithm decreases with increasing problem size or precision demands.
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Fig. 31.1 Exact converged solutions obtained using classical solvers for the problem solved in this 
chapter

Below, we provide code for an iterative QLSA [5] implementing Richardson 
iterations for heat transfer problems in 1- and 2-dimensions with various boundary 
conditions; see Figs. 31.1 and 31.2 for convergence results. 

#!/usr/bin/python3 

import qiskit 

from qiskit import * 

import numpy as np 

from scipy.io import loadmat 

from scipy.io import savemat 

print("Get phase angles from QSPPACK and store them as phi.mat") 

print("Run this code by passing problem parameters in the following 

format:") 

print("python this_code.py problem_number num_qubits_each_ 

dimension num_iterations") 

import sys 

# print (’argument list’, sys.argv) 

# problem = int(sys.argv[1]) 
# n = int(sys.argv[2]) 
# l = int(sys.argv[3]) 

problem = 1 
n = 2 
l = 2 

if problem == 1:
d = 1

NBCs = [[False, False]]
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Fig. 31.2 Convergence of iterates produced classically and using a quantum iterative linear solver 
running on a simulator for the problem solved in this chapter

elif problem == 2: 
d = 1 
NBCs = [[False, True]] 

elif problem == 3: 
d = 2 
NBCs = [[False, True],[False, False]] 

elif problem == 4:

d = 2
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NBCs = [[False, True],[False, True]] 

elif problem == 5: 
d = 2 
NBCs = [[False, True],[True, True]] 

print("problem number: {}".format(problem)) 

print("boundary conditions: {}".format(NBCs)) 

print("problem size: {}".format(n)) 

print("number of iterations {}".format(l)) 

# Load and prep angles 

phi_angles = np.array( loadmat(’phi_kappa_80_pts_8000_deg_ 

1999.mat’) ).item()[’phi_proc’] 

phase_angles = phi_angles.reshape(phi_angles.shape[0]) 

########### Functions for C ####################3 

def C_i(i,register): 

n = register.size 
if i<1 or i>(n-1): 

print(’WRONG VALUE FOR i !!!!’) 

return 

Ci = QuantumCircuit(register, name=’C_{}’.format(i)) 

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for 

j in range(1,i+1)] 

Ci.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=i, 

ctrl_state=’0’*i),register[:i+1]) 

# Ci.mcx(control_qubits=workRegister[:i-1],target_ 

qubit=workRegister[i-1]) 

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for 

j in reversed(range(1,i+1))] 

return Ci 

############### Functions for R ############### 

def L1_d(register): 

n = register.size 

# Circuit that creates L1 unitary 

L1 = QuantumCircuit(n,name=’L1’)

L1.x(0)

return L1

def L2_d(register):

n = register.size
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L2 = QuantumCircuit(register,name=’L2’) 
for j in range(1,n): 

L2 = L2.compose(C_i(j,register)) 

return L2 

def L3_d(register,NBC): 

n = register.size 

L3 = QuantumCircuit(register,name=’L3’) 

if not NBC[0]: 

L3.x(0) 

L3.h(0) 

L3.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-

1, ctrl_state=’0’*(n-1)),register[1:]+[register[0]]) 

L3.h(0) 

L3.x(0) 

if not NBC[1]: 

L3.h(n-1) 

L3.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-

1, ctrl_state=’1’*(n-1)),register) 

L3.h(n-1) 

return L3 

def L4_d(register,NBC): 

n = register.size 

L4 = QuantumCircuit(register,name=’L4’) 

# Apply -ve sign to the unitary 

L4.z(0) 

L4.x(0) 

L4.z(0) 

L4.x(0) 

return L4 

def R_circuit(n,d,workRegisters,lcuRegister,NBCs,alphas):

# Create the Prep Circuit
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prep = QuantumCircuit(lcuRegister,name=’Prep’) 
prep.prepare_state(alphas) 

allregisters = [] 
allregisters.extend(workRegisters) 

allregisters.extend([lcuRegister]) 

blockEncoded = QuantumCircuit(*workRegisters,lcuRegister,name=’R’) 

# Apply the PREP operation 

blockEncoded = blockEncoded.compose(prep,lcuRegister) 

# Apply the SELECT operation using controlled versions of the 

circuits L1-L3 

# This needs to be done for each dimension! 

for i in range(d): 

if d>1: 

d_string = format(i, ’0{}b’.format(d_size)) 

else: 

d_string = ” 

blockEncoded.append(L1_d(workRegisters[i]).control(num_ctrl_ 

qubits=(d_size+2) ,ctrl_state=d_string+’00’), lcuRegister[:] + 
workRegisters[i][:]) 

blockEncoded.append(L2_d(workRegisters[i]).control(num_ctrl_ 

qubits=(d_size+2) ,ctrl_state=d_string+’01’), lcuRegister[:] + 
workRegisters[i][:]) 

blockEncoded.append(L3_d(workRegisters[i],NBCs[i]).control(num_ 

ctrl_qubits=(d_size+2),ctrl_state=d_string+’10’), lcuRegis-

ter[:] + workRegisters[i][:]) 

blockEncoded.append(L4_d(workRegisters[i],NBCs[i]).control(num_ 

ctrl_qubits=(d_size+2),ctrl_state=d_string+’11’), lcuRegis-

ter[:] + workRegisters[i][:]) 

# Apply the PREP+ operation 

blockEncoded = blockEncoded.compose(prep.inverse(),lcuRegister)

return blockEncoded

######################## Functions for D ##########################
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def L1_1(register): 

n = register.size 

# Circuit that creates L1 unitary 

L1 = QuantumCircuit(n,name=’L1_1’) 
L1.x(0) 

L1.z(0) 

return L1 

def L1_2(register): 

n = register.size 

# Circuit that creates L1 unitary 

L1 = QuantumCircuit(n,name=’L1_2’) 
L1.z(0) 

L1.x(0) 

L1.z(0) 

return L1 

def C_i(i,register): 

n = register.size 
if i<1 or i>(n-1): 

print(’WRONG VALUE FOR i !!!!’) 

return 

Ci = QuantumCircuit(register, name=’C_{}’.format(i)) 

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for 

j in range(1,i+1)] 

Ci.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=i, 

ctrl_state=’0’*i),register[:i+1]) 

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for 

j in reversed(range(1,i+1))] 

return Ci 

def L2_1(register): 

n = register.size 

L2 = QuantumCircuit(register,name=’L2_1’) 
# Apply -ve to sign to alternating bits

L2.z(0)

for j in range(1,n):

L2 = L2.compose(C_i(j,register))
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return L2 

def L2_2(register): 

n = register.size 

L2 = QuantumCircuit(register,name=’L2_2’) 
L2.h(n-1) 

L2.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-1, 

ctrl_state=’1’*(n-1)),register) 

L2.h(n-1) 

for j in range(1,n): 

L2 = L2.compose(C_i(j,register)) 
L2.z(0) 

L2.x(0) 

L2.z(0) 

L2.x(0) 

return L2 

def D_circuit(l,indexRegister,lcuRegister,alphas): 

# Create the Prep Circuit 

prep = QuantumCircuit(lcuRegister,name=’Prep’) 
prep.prepare_state(alphas) 

allregisters = [] 
allregisters.extend([indexRegister]) 

allregisters.extend([lcuRegister]) 

blockEncoded = QuantumCircuit(indexRegister,lcuRegister,name=’D’) 

# Apply the PREP operation 

blockEncoded = blockEncoded.compose(prep,lcuRegister) 

# Apply the SELECT operation using controlled versions of the 

circuits L1_i, L2_i 

blockEncoded.append(L1_1(indexRegister).control(num_ctrl_ 

qubits=(2) ,ctrl_state=’00’), lcuRegister[:] + indexRegister[:]) 
blockEncoded.append(L1_2(indexRegister).control(num_ctrl_ 

qubits=(2) ,ctrl_state=’01’), lcuRegister[:] + indexRegister[:]) 
blockEncoded.append(L2_1(indexRegister).control(num_ctrl_ 

qubits=(2) ,ctrl_state=’10’), lcuRegister[:] + indexRegister[:])

blockEncoded.append(L2_2(indexRegister).control(num_ctrl_

qubits=(2) ,ctrl_state=’11’), lcuRegister[:] + indexRegister[:])
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# Apply the PREP+ operation 

blockEncoded = blockEncoded.compose(prep.inverse(),lcuRegister) 

return blockEncoded 

################ Functions for QSP Rotation 

################################## 

def CR_phi_d_efficient(phi, _d, signalReg, lcuRegister_R, lcuReg-

ister_l, lcuRegister_q, circuit): 

BE_size = lcuRegister_R.size + lcuRegister_l.size + lcuRegister_ 
q.size 

ctrl_state = ’0’*(BE_size) 

circuit.append(qiskit.circuit.library.MCXGate(num_ctrl_ 

qubits=BE_size, ctrl_state=ctrl_state), lcuRegister_R[:] + 
lcuRegister_l[:] + lcuRegister_q[:] + signalReg[:]) 

circuit.rz(2*phi, signalReg) 

circuit.z(signalReg) 

circuit.append(qiskit.circuit.library.MCXGate(num_ctrl_ 

qubits=BE_size, ctrl_state=ctrl_state), lcuRegister_R[:] + 
lcuRegister_l[:] + lcuRegister_q[:] + signalReg[:]) 

return 

####################### Construct qRLS Circuit 

############################## 

d_size = int(np.log2(d)) 

workRegisters = [QuantumRegister(n,name=’dim {}’.format(i)) for i 

in range(d)] 

indexRegister = QuantumRegister(l,name=’index’) 

alphas_R = np.array([np.sqrt(1+0j), np.sqrt(1+0j), 

np.sqrt(0.5+0j), np.sqrt(0.5+0j)]*d) 

alphas_R = alphas_R/np.linalg.norm(alphas_R,2) 
lcu_size_R = int(np.ceil(np.log2(alphas_R.size)))
lcuRegister_R = QuantumRegister(lcu_size_R,name=’lcu_R’)

R = R_circuit(n,d,workRegisters,lcuRegister_R,NBCs,alphas_R)

alphas_l = np.array([np.sqrt(0.5+0j), np.sqrt(0.5+0j),

np.sqrt(0.5+0j), np.sqrt(0.5+0j)])

alphas_l = alphas_l/np.linalg.norm(alphas_l,2)
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lcu_size_l = int(np.ceil(np.log2(alphas_l.size))) 
lcuRegister_l = QuantumRegister(lcu_size_l,name=’lcu_l’) 
D = D_circuit(l,indexRegister,lcuRegister_l,alphas_l) 

alphas_q = np.array([np.sqrt(1+0j), np.sqrt(3+0j)]) 

alphas_q = alphas_q/np.linalg.norm(alphas_q,2) 
lcu_size_q = int(np.ceil(np.log2(alphas_q.size))) 
lcuRegister_q = QuantumRegister(lcu_size_q,name=’lcu_q’) 

R = R_circuit(n,d,workRegisters,lcuRegister_R,NBCs,alphas_R) 
D = D_circuit(l,indexRegister,lcuRegister_l,alphas_l) 
R = R.decompose(reps=6) 
D = D.decompose(reps=6) 

prep = QuantumCircuit(lcuRegister_q,name=’Prep’) 
prep.prepare_state(alphas_q) 

qRLS_circuit = QuantumCircuit(*workRegisters,indexRegister,lcuRegister_ 
R,lcuRegister_l,lcuRegister_q,name=’qRLS’) 

qRLS_circuit = qRLS_circuit.compose(prep,lcuRegister_q) 
qRLS_circuit.append(R.control(num_ctrl_qubits=(1) ,ctrl_ 

state=’1’), lcuRegister_q[:] + [_x for _xs in workRegisters for _x 

in _xs] + lcuRegister_R[:]) 
qRLS_circuit.append(D.control(num_ctrl_qubits=(1) ,ctrl_ 

state=’1’), lcuRegister_q[:] + indexRegister[:] + lcuRegister_ 
l[:] ) 

qRLS_circuit = qRLS_circuit.compose(prep.inverse(),lcuRegister_ 
q) 

U_A = qRLS_circuit 
U_A_i = U_A.inverse() 

signalRegister = QuantumRegister(1,name=’QSP signal’)

QSP_circuit = QuantumCircuit(*workRegisters,indexRegister,lcuRegister_

R,lcuRegister_l,lcuRegister_q,signalRegister,name=’QSP_

Solver’)

# Prepare initial state

initial_state = np.ones(2**l)

initial_state[0] = 0

initial_state = initial_state/np.linalg.norm(initial_state,2)

QSP_circuit.append(qiskit.circuit.library.StatePreparation(initial_

state),indexRegister)
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for _i in workRegisters: 

QSP_circuit.h(_i) 

####################### Start QSP Sequence 

####################### 

# First thing is to Hadamard the signal qubit since we want Re(P(A)) 

QSP_circuit.h(signalRegister) 

for _d, phi in reversed( list( enumerate( phase_angles[:]))): 

CR_phi_d_efficient(phi,_d,signalRegister,lcuRegister_ 

R,lcuRegister_l,lcuRegister_q,QSP_circuit) 

if _d>(0): 

if _d%2: 

for _ci in U_A_i.data: 

QSP_circuit.append(_ci) 

else: 

for _ci in U_A.data: 

QSP_circuit.append(_ci) 

# Apply the final Hadamard gate 

Q SP_circuit.h(signalRegister) 

####################### Simulate Circuit ####################### 

print(’running simulation’) 

from qiskit_aer import Aer 

device = ’CPU’ 
backend = Aer.get_backend(’statevector_simulator’, 

device=device, precision=’double’) 

print(’transpiling circuit’) 

transpiled_QSP_circuit = qiskit.transpile(QSP_ 

circuit.decompose(reps=3)) 

print(’completed transpilation, starting job’) 

result = backend.run(transpiled_QSP_circuit,shots=0).result() 

statevector = result.get_statevector() 
final_output = np.array(statevector)[0:(2**(l)*2**(n*d))] 
iterates = final_output/np.linalg.norm(final_output,2) 

####################### Calculate classical iterates 

####################### 

R = [np.zeros((2**n,2**n)) for _i in NBCs]

for _R in R:
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i, j = np.indices(_R.shape) 
_R[i==j-1] = 0.5 
_R[i==j+1] = 0.5 

for _i,_R in zip(NBCs,R): 

if _i[0]: 

_R[0,0] = 0.5 
if _i[1]: 

_R[-1,-1] = 0.5 
R_full = np.zeros((2**(n*d),2**(n*d))) 
for _i,_R in enumerate(reversed(R)): 

if _i == 0: 
_Ri = _R 

else: 

_Ri = np.eye(2**n) 
for _j in range(1,d): 

if _j==_i: 

_Ri = np.kron(_Ri,_R) 
else: 

_Ri = np.kron(_Ri,np.eye(2**n)) 
R_full += _Ri 

R_full = R_full/d 

classical_iterates = [np.zeros(R_full.shape[0]) for _i in 

range(2**l)] 

f = np.ones(R_full.shape[0]) 
for _i in range(2**l - 1): 

classical_iterates[_i+1] = np.matmul(R_full,classical_ 

iterates[_i]) + f 
classical_iterates = np.concatenate(classical_iterates) 
classical_iterates = classical_iterates/np.linalg.norm(classical_ 

iterates,2) 

####################### Calculate the exact solution 

####################### 

A = [np.zeros((2**n,2**n)) for _i in NBCs] 

for _A in A: 

i, j = np.indices(_A.shape) 
_A[i==j-1] = -1

_A[i==j+1] = -1

_A[i==j] = 2

for _i,_A in zip(NBCs,A):

if _i[0]:

_A[0,0] = 1

if _i[1]:

_A[-1,-1] = 1
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A_full = np.zeros((2**(n*d),2**(n*d))) 
for _i,_A in enumerate(reversed(A)): 

if _i == 0: 
_Ai = _A 

else: 

_Ai = np.eye(2**n) 
for _j in range(1,d): 

if _j==_i: 

_Ai = np.kron(_Ai,_A) 
else: 

_Ai = np.kron(_Ai,np.eye(2**n)) 
A_full += _Ai 

f = np.ones(R_full.shape[0]) 
exact_sol = np.linalg.solve(A_full,f) 
exact_sol = exact_sol/np.linalg.norm(exact_sol,2) 

####################### Calculate the iterate errors 

####################### 

quantum_convergence = [] 
for _i in range(1,2**l): 

quantum_convergence.append( np.linalg.norm(exact_ 

sol - iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]/ 

np.linalg.norm(iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)],2)) 

) 

classical_convergence = [] 
for _i in range(1,2**l): 

classical_convergence.append( np.linalg.norm(exact_ 

sol - classical_iterates[(2**(n*d))*(_i):(2**(n*d))*(_ 

i+1)]/np.linalg.norm(classical_iterates[(2**(n*d))*(_ 

i):(2**(n*d))*(_i+1)],2)) ) 

####################### Calculate the QSP errors 

####################### 

QSP_errors_full = [] 
for _i in range(2**l): 

QSP_errors_full.append( np.linalg.norm( ( classical_ 

iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]) - iterates[_ 

i*(2**(n*d)):(_i+1)*(2**(n*d))], 2 ) ) 

####################### Save all useful variables

#######################

mdic = {"dimensions":d, "n":n, "l":l, "BCs":NBCs, "raw_

statevector": final_output, "classical_solution":classical_
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iterates, "QSP_solution":iterates, "QSP_Errors":QSP_errors_ 

full, "classical":classical_convergence, "quantum":quantum_ 

convergence} 

savemat("output_problem_{}_n_{}_l_{}.mat".format(problem,n,l), 

mdic) 

print("completed simulation with parameters:") 

print("problem number: {}".format(problem)) 

print("boundary conditions: {}".format(NBCs)) 

print("problem size: {}".format(n)) 

print("number of iterations {}".format(l)) 

print(’\n\nsaved output\n\n’) 

In summary, iterative quantum linear system algorithms are a recent and active 
area of quantum computing research. While methods such as the qRLS demon-
strate the feasibility of quantum approaches for solving linear systems, their 
applicability is presently limited to symmetric positive-definite matrices due to 
convergence requirements and the structure of quantum algorithmic primitives. 
Key challenges remain in extending these techniques to more general matrix 
classes, improving convergence for ill-conditioned or indefinite systems, and 
developing robust quantum preconditioners. Addressing these limitations will be 
essential for advancing the practical impact and applicability of iterative quantum 
algorithms in scientific and engineering domains. 
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32Quantum Ordinary Differential 
Equation Algorithms: Block-Matrix 
Algorithms 

Systems of ordinary differential equations (ODEs) frequently arise in scientific 
and engineering computations. For many problems of practical interest, the sys-
tems may be high-dimensional and large enough to be computationally expensive, 
to the extent that they become large enough to be computationally prohibitive 
or intractable. The capability of quantum computers to process vectors in expo-
nentially large spaces is a promising solution to alleviate computational resource 
concerns for the numerical solution of large-scale differential equation problems. 
In this chapter we discuss the block-matrix approach for quantum ordinary differ-
ential equation algorithms. In the next chapter, the more nascent time-marching 
approach is discussed. 

For inhomogeneous linear systems of ODEs, the first efficient quantum algo-
rithm was developed by Berry [1] by using a linear multistep method for time 
discretization. The recursive relation for discrete time-stepping is encoded as a 
block-linear system, as discussed in Chap. 26: Matrix-Vector Multiplications and 
Affine Linear Operations. The scaling was subsequently improved in [2] to achieve 
quasi-linear scaling in t and exponentially improved precision by using a Taylor 
series time discretization instead of a linear multistep formula. A spectral time 
discretization approach was provided by Childs and Liu [3], which can also accom-
modate the case of time-dependent A(t). We note that all these algorithms require 
that A have non-positive real parts of its eigenvalues, i.e., only decaying solutions 
in the 2-norm are tractable. The results of [1–3] were further improved and general-
ized by Krovi [4], with exponentially improved bounds on error for ill-conditioned 
diagonalizable linear ODE systems, non-diagonalizable systems of ODEs, and also 
provided an improved version of the algorithm provided by Liu et al. [5] for Car-
leman linearized nonlinear PDEs. An et al. [6] developed a theory for the overhead 
in the quantum complexity of solving homogeneous ODEs, identifying sources of
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“non-quantumness” that increase overhead compared to quantum dynamics simu-
lation. Specifically, non-unique real parts of the eigenvalues can lead to exponential 
overhead in the worst case, while the non-orthogonality of eigenvectors, measured 
by μ(A) = AA† − A†A

1/2
, incurs a linear overhead in μ(A). 

For simplicity, we outline the method of [2] as an example, solving a first-order 
time-independent initial value problem for the ODE system 

dx 

dt 
= Ax + b

with initial condition x(0), where A and b are time-independent. 
This ODE system has an exact solution 

x(t) = eAtx(0) + eAt − I A−1b

eAt and eAt − I A− 1 are approximated using Taylor series expansions with k + 1 
and k terms, respectively: 

e(z) ≈ Tk (z) = 
k 

j=0

zj

j! , z
−1 ≈ Sk (z) = 

k 

j=1

zj−1

j! 

A time step h ≤ 1 
A is chosen, yielding the recurrence 

xt = Tk (Ah)xt−1 + Sk (Ah )b

where x0 = x(0 ) and xt ≈ x(t ) such that xt 
xt 

− x(t )
x(t) ≤ . This recurrence 

relation involves powers of Ah and their sums, making the block-linear systems 
slightly more complex for this problem, compared to the much simpler sequence of 
linear operations discussed in Chap. 26: Matrix-Vector Multiplications and Affine 
Linear Operations. p copy steps are also appended to boost the success probability, 
which are also discussed in Chap. 26: Matrix-Vector Multiplications and Affine 
Linear Operations. The block-linear system is of the form: 

MA,h,k,m,p|x = |init
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where 

MA,h,k,m,p = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
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⎜
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−Ah I
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−Ah

k I 
−I −I · · ·  −I −I I  
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−Ah
k I 

−I · · ·  −I −I  I  
−I  I  

. . . . . . 
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m−1 

i=0 

k 

j=0 

|i(k + 1) + j xi,j + 
p 

j=0 

|m(k + 1) + j xm,j 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

x0,0 
x0,1 
x0,2 
... 

x0,k 
x1,0 
x1,1 
... 

xm−1,k 

xm,0 

xm,1 
... 

xm,p 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0
Ahx0

(Ah)2/2x0
...

(Ah)k/k!x0
x1

Ahx1
...

(Ah)k/k!xm−1

xm
xm
...

xm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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|init = |0 x0 h 
m−1 

i=0 
|i(k + 1) + 1 b = 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

x0 
hb 
0 
... 
0 
0 
hb 
... 
0 
0
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where normalization of |x and |init is implied. 
Solving this linear system yields a quantum state |x encoding all the time 

steps (and intermediate vectors). Finally, measuring the first register |i such that 
i ≥ m(k + 1) + j projects onto the desired solution. 

This algorithm consists of the following three major steps: 

1. Prepare |init 
2. Solve linear system MA,h,k,m,p 
3. Measure first register |i 
4. Restart if i < m(k + 1) + j. 

The overall complexity [2]  i  s

O(κAgT A poly log(κAgβT A )) 

where κA is the condition number of A, g = maxt∈[0,mh] x(t) 
x(mh) , and β = 

x0 +T b 
x(T ) . 

The method uses (1, m, 0 ) block encoding of UA, and state preparation unitaries 
Ux0 and Ub. 

The no-fast-forwarding theorem forbids sublinear scaling in time for general 
problems [2]. While [6] provides lower bounds on the complexity of solving 
any general linear systems of ODEs, they also identify specific cases for which 
the solution can be fast-forwarded, i.e., solved with sublinear scaling in time. 
Bounded negative-semidefinite linear ODE problems with square-root access to 
A or negative-definite problems can achieve a quadratic speedup in T , while prob-
lems for which the Eigen decomposition is known can achieve an exponential 
speedup.
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An algorithm with a complete circuit description and experimental results for 
a system of inhomogeneous ODEs of size 4 × 4 was given by Xin et al. [7] for 
unitary A. 

Speedups for ODEs can have a great impact on engineering and scientific 
computation. As an example, the N -body problem involves numerically solving 
a system of ODEs in 6N dimensions for time t. Compared to a classical com-
plexity of O(t) and O(N ) for solution time and memory resources, a quantum 
computer could potentially require O(t) time and O(log(N )) qubits. 

Hyperbolic and parabolic partial differential equations, ubiquitous in engineer-
ing, physics, finance, medicine, and many other applications, can be transformed 
into systems of ODEs using a discretization in space. We discuss partial differential 
equations in Chap. 34: Quantum Partial Differential Equation Algorithms. 

The Hamiltonian simulation problem, discussed in detail in Chap. 28, Hamil-
tonian Simulation Techniques, for quantum dynamics of closed quantum systems 
seeks a solution of the Schrodinger equation, which is a homogeneous system 
of first-order ODEs. The first quantum algorithm for this problem was pro-
posed by Lloyd [8] using the Trotter method. The complexity of this method 
was later improved to a query complexity of O d2 H maxt log d

2 H max 
by Berry et al. [9] by using a linear combination of unitaries arising from a 
truncated Taylor series. The optimal algorithm for Hamiltonian simulation using 
quantum signal processing was later provided by Low and Chuang [10] with a 
query complexity of O td H max + log 1 / log log 1 using d -sparse oracles or 
O t H +  +  log 1 / log log 1 using block-encoded oracles. 

Various algorithms have been presented for nonlinear ODE problems. The first 
quantum algorithm for nonlinear differential equations (also the first quantum 
algorithm for any differential equation) was proposed by Leyton [11]. Leyton’s 
algorithm proposed solving a nonlinear system of ordinary differential equations 
using the Euler method and requires multiple copies of the initial condition, 
leading to an exponentially increasing cost in time. The algorithm requires the 
preparation of multiple copies of a quantum state to effect nonlinear transfor-
mations of amplitude-encoded states. While block-encoding enables nonlinear 
transformations of the singular values of a matrix A, it does not allow nonlinear 
transformations of quantum state amplitudes as inputs to nonlinear functions. 

Liu et al. [5] has provided an algorithm for dissipative nonlinear differential 
equations, specifically the n-dimensional quadratic ODE initial value problem, 
using the Carleman linearization technique. Xue et al. [12] applied homotopic 
perturbation methods for exponentially improved precision for the homogeneous 
version of the algorithm in [5] with an orthogonal linear term. However, Krovi 
[4] notes that the problem considered by Xue et al. [12] is limited by exponen-
tially decaying solutions and suffers from the post-selection problem. Joseph [13] 
explores the transformation of phase space to an equivalent Schrödinger equation 
using the Koopman–von Neumann formulation. Berry and Costa [14] addresses 
time-dependent problems using the Dyson series, and the spectral method in [3] 
can also handle time-dependent A(t). Lloyd et al. [15] proposed an algorithm 
for nonlinear ODEs using forward Euler discretization for short time intervals;
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this also requires multiple copies of the initial state, but the increase in cost is 
quadratic rather than exponential as in [11]. A time-marching strategy for nonlin-
ear ODEs has been suggested by [16, 17]. All quantum algorithms for nonlinear 
ODEs require the system to be dissipative. 

Engel et al. [18] provides an overview of techniques for mapping nonlinear 
systems to infinite-dimensional linear systems using Carleman embedding and 
truncating to finite-dimensional systems for solution on quantum computers but 
does not provide a concrete algorithm. Joseph [13] also provides an overview of 
the Koopman–von Neumann method for a potential quadratic speedup in specific 
cases. 
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33Quantum Ordinary Differential 
Equation Algorithms: Time-Marching 
Algorithms 

Recent work has demonstrated methods to circumvent the construction of a large 
linear system by using a time-marching strategy to propagate the solution for-
ward in time [1, 2]. However, these techniques are currently sub-optimal and scale 
quadratically in t. 

A time-marching algorithm can be described as a procedure that integrates 
differential equations one time step at a time, following the sequence 

|ψl−1 → |ψl |ψl+1 

For time-independent linear first-order ordinary differential equations (ODEs) 
with unitary dynamics, this can be accomplished in a relatively straightforward 
manner using the Trotter method. However, for higher precision and non-unitary 
dynamics, additional considerations are needed. The first quantum time-marching 
method was proposed by Fang et al. [2] for time-dependent ODEs, utilizing the 
Dyson series. 

In this chapter, we will focus on challenges associated with the time-marching 
approach and techniques to address them. Consider a time-independent first-order 
homogeneous ODE system 

dx 

dt 
= Ax 

Using a forward Euler discretization with time steps t, we obtain 

xt = (I + A t)xt−1
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Let’s assume access to I + A t through a (α I + A t , m, 0) block encoding. 
We may use this block encoding for each time step 

I+A t 
α I+A t ∗ 

∗ ∗  
|xt−1 ⊗ |0 ⊗ m = 1

α I + A t 
|xt |0 ⊗m + | ⊥

where successful measurement of all ancilla qubits in the |0 state yields |xt with 
a success probability of 

p |0 ⊗m = 1 

α2 I + A t 2 
xt 2

xt−1 
2 

Given |x0 , applying this process L = T 
t times yields |xT with an overall 

success probability 

1 

α2L I + AT /L 2L 
xT 2

x0 2 
≈ 

1 

αL 

1 

eAT 
2 

xT 2 

x0 2 

Note that this approach requires O(mL) ancilla qubits. The factor 1 
αL reflects the 

excessive subnormalization of the block-encoding. In the optimal case, α = 1. The 
factors 1 

I+AT /L 2L 
and xT 2 

x0 2 arise from the block-encoding and the dynamics of 

the problem itself. 
The excessive subnormalization arising due to α can be mitigated by apply-

ing the Uniform Singular Value Amplification (USVA) procedure. As discussed in 
Chap. 26, Matrix-Vector Multiplications and Affine Linear Operations, the under-
lying idea of USVA is to use the Quantum Singular Value Transform to apply a 
polynomial approximating f (x) ≈ g(x) = α

1−δ x over the interval x ∈ − 1
α , 

1
α as 

shown in Fig. 33.1. Since f (x) approximates g(x) with a polynomial, this method 
introduces errors.

By choosing δ = 1
L , the success probability over L > 1 time steps can be 

bounded below by 

1 

(1 − δ)L 
1

I + AT /L 2L 
xT 2

x0 2 

Using the inequality (1 − δ)L ≥ e− δL
1−δ , which for δ = 1

L gives (1 − δ)L = 
(1 − 1/L)L ≥ e−1, we see that this term is bounded below by a constant, i.e., 

(1). Therefore, the overall success probability is O 1 
I+AT /L 2L 

xT 2 

x0 2 
. 

As discussed in Chap. 26, Matrix-Vector Multiplications and Affine Linear 
Operations, we may use a compression gadget to reduce the number of ancilla 
qubits. In the naïve approach for implementing a time-marching algorithm, one 
must dedicate O(m) ancilla qubits for each block encoding, implementing a time
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Fig. 33.1 Polynomial fit for 
USVA

step. Furthermore, the USVA procedure requires one more ancilla qubit. These 
ancilla requirements may be reduced using a compression gadget to O(m + log L ). 

Using these techniques, one may develop an algorithm for homogeneous time-
dependent linear systems of differential equations based on the Dyson series 
approach 

d 

dt 
|ψ(t) = A(t)|ψ(t )

For full analysis and complexity of this algorithm, see [2]. 
It is important to note that this time-marching approach is not known to be 

optimal, as its complexity scales quadratically in t, compared to the linear scaling 
achievable by block-matrix methods. Furthermore, existing algorithms have been 
developed primarily for homogeneous systems, though the method of variation of 
parameters has been proposed for inhomogeneous cases. Whether time-marching 
algorithms for ODEs can match the efficiency of block-matrix methods remains 
an open research question. 
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34Quantum Partial Differential 
Equation Algorithms 

Partial differential equations (PDEs) are central to modeling physical phenomena 
across science and engineering. PDEs of practical interest can commonly be classi-
fied as elliptic, parabolic, and hyperbolic systems. PDEs are solved numerically on 
classical computers using techniques such as the finite element, finite difference, 
or finite volume methods, which reduce the PDEs to a discretized system of equa-
tions. These equations are solved using either direct or iterative methods. Iterative 
solvers scale better than direct methods and are preferred for large-scale problems 
with steady-state solutions or transient problems with implicit time marching. 

Quantum computers can be used to accelerate the solution of linear systems 
of equations arising from PDE discretization through quantum linear system algo-
rithms (QLSA). However, for large discretizations, the linear system can become 
increasingly ill-conditioned. As an example, the condition number of a linear sys-
tem arising from a finite element discretization can scale as O N 2 , negating the 
exponential speedup provided by direct QLSAs when compared to classical iter-
ative solvers. Alternatively, some PDEs can be mapped to either the Schrödinger 
equation or to systems of ODEs, enabling the use of quantum Hamiltonian sim-
ulation or ODE solvers that can yield exponential speedups with respect to the 
number of unknowns. However, such approaches are limited to structured grids on 
rectangular domains. 

Several quantum algorithms have been proposed for solving PDEs using dif-
ferent discretization techniques: finite element [1, 2], finite volume [3], finite 
difference [4–6], and spectral methods [7]. These approaches include (i) directly 
solving the discretized linear system via QLSAs [1]; (ii) employing Hamiltonian 
simulation to extract eigenvalues [8, 9]; (iii) mapping the PDE to the Schrödinger 
equation and evolving in time using Hamiltonian simulation [10, 11]; and (iv) 
quantum ODE algorithms to evolve spatially discretized evolutionary PDEs [12]. 
We summarize these approaches below.
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Clader et al. [1] introduces the use of QLSAs to solve the linear system 
arising from a finite element discretization with preconditioning using a sparse 
approximate-inverse preconditioner for exponential speedup. This approach was 
further investigated by Montanaro and Pallister [2], who points out that when the 
cost of reading out the properties of the solution is included, the speedup is poly-
nomial, with the speedup increasing for higher dimensional problems. However, 
quantum circuits or procedures to implement the preconditioner were not provided. 

For the Poisson equation with Dirichlet boundary conditions on rectangular 
grids, Cao et al. [9] proposed an algorithm with linear scaling in spatial dimension 
d and polylogarithmic scaling in 1 , utilizing the finite difference method to 
discretize the Laplacian operator on a unit cube and using Hamiltonian simulation 
of the discretized operator. Due to the geometry of the domain, the Laplacian 
operator in d dimensions can be expressed as the Kronecker sum 

A = Lh ⊗ I ⊗  · · ·  ⊗  I + I ⊗ Lh ⊗  · · ·  ⊗  I +  ·  · · + I ⊗ I ⊗ · · · ⊗ Lh

where Lh is the discretized Laplacian operator with grid spacing h. Using the 
exponentiation identity for Kronecker sums, the following Hamiltonian simulation 
is performed: 

eiAt = eiLht ⊗ I ⊗  · · ·  ⊗  I I ⊗ eiLht ⊗  · · ·  ⊗  I · · ·  I ⊗ I ⊗  · · ·  ⊗  eiLht 

= e iLht ⊗ eiLht ⊗ · · · ⊗ eiLht

Controlled versions of the Hamiltonian simulation are used to kick back the 
phase, and the remainder of the algorithm proceeds similar to HHL. This algo-
rithm was implemented with modifications for circuit optimization by Wang et al. 
[13] on a quantum simulator. Childs et al. [7] points out that while the circuit depth 
scales favorably, the probability of success is O(poly(1 )) and finite-difference 
discretization errors are not considered in the analysis. Childs and Liu [14] 
approaches the same problem with spectral and adaptive finite difference methods 
under a “global strict diagonal dominance” requirement, a stricter condition than 
diagonal dominance, to achieve a complexity of O d2 poly log(1 ) using the 

spectral method and O d 
13 
2 poly log(d ) using adaptive finite difference grids. 

However, the Kronecker product structure does not generalize to unstructured grids 
on general domains encountered in problems of practical interest. 

An algorithm for simulating the wave equation using the finite difference 
method was presented in [10] for Dirichlet and Neumann boundary conditions 
using an approach based on a factorization of the Laplacian operator on a rect-
angular domain as Lh = BB † to map the problem (second-order time derivative) 
to the Schrödinger equation (first-order time derivative) solved using Hamiltonian 
simulation as 

d 

dt 
|ψ(t) =  − i

h 
0 B 
B† 0 

|ψ(t)
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by noting that 

d2 

dt2 
|ψ(t) =  − 1

h2 
BB† 0 
0 B†B 

|ψ(t) =  − 1

h2 
Lh 0 
0 L† h 

|ψ(t) 

where |ψ(t) = φV 

φE 
. φV encodes the solution to the wave equation and φE are 

intermediate variables. This algorithm was implemented by Suau et al. [15], albeit 
using the sub-optimal Trotter–Suzuki method for Hamiltonian simulation. 

Engel et al. [11] provide a quantum algorithm for plasma physics problems. 
A linearized version of the Vlasov equation was derived, which is then evolved 
in time using Hamiltonian simulation algorithms similar to [10], and a com-
plete circuit description with simulation results is provided with errors scaling 
as O(poly(1 )). Novikau et al. [16] mapped a cold plasma wave model to 
a Hamiltonian simulation and suggested quantum signal processing for further 
improvements. These Schrödingerization approaches are specialized and may not 
generalize to all PDEs. 

Algorithms for evolutionary PDEs mentioned above typically scale linearly in 
simulation time, i.e., O(t). An et al. [12] discretize hyperbolic and parabolic PDEs 
in space over a rectangular domain to obtain a system of ordinary differential 
equations. Quantum ODE solvers were then used to evolve the system in time 
instead of Hamiltonian simulation. They consider two scenarios to “fast-forward” 
(improve the time-complexity of) the simulation: semidefinite ODE systems with 
square-root access (similar to the decomposition in [10]) and diagonalizable sys-
tems (using a Fourier transform) to get O

√
t and O(log t) scaling in time. The 

lifting transformation proposed by Costa et al. [10] to transform a second-order 
ODE system d

2 

dt2 
u(t) = (A + cI)u(t)+b(t) to a first-order ODE system is extended 

for non-homogeneous systems as 

d 

dt 
u(t) 
ṽ(t) 

= 0 I 
(A + cI ) 0 

u(t) 
ṽ(t)

+ 0 
b(t)

Analytical results for the transport equation, heat equation, advection–diffu-
sion equation, wave equation, Klein–Gordon equation, Airy equation, and the 
Euler beam equation are provided. However, the fast-forwarding results are again 
restricted to specialized domains and structured grids. 

Several algorithms have been proposed for numerical solutions of the Navier– 
Stokes equations for computational fluid dynamics. Quantum lattice-gas models 
have been proposed by [17–20], with numerical results presented in [21]. However, 
these methods are for Type-II quantum computers [22] whose architecture differs 
from the universal gate-based quantum computer architecture. Other approaches, 
such as the lattice Boltzmann method, have also been mapped to quantum circuits. 
Budinski [23] detailed circuits and simulations for the advection–diffusion equa-
tion, achieving O log2(αD) scaling, where α is the total number of distribution 
functions and D is the number of distribution functions for each site, albeit with a



274 34 Quantum Partial Differential Equation Algorithms

fixed choice of the relaxation time ω = 1 and a limited choice of D1Q2 and D2Q5 
models in 1D and 2D respectively. The approach requires classical computation 
for renormalization of the post-selected state after each time step. We note, how-
ever, that [24] pointed out that the streaming and collision operations are amenable 
to quantum computation and provide a quantum mapping of transport equations 
in fluid flows using analogies between the Dirac and Lattice Boltzmann equations 
to define an algorithm that measures an ancillary qubit at each time step, with a 
non-zero probability of success. 

A quantum Navier-Stokes algorithm based on the quantum amplitude estimation 
algorithm was proposed by Gaitan [25], which was later generalized to a quantum 
nonlinear PDE algorithm in [26]. However, the precision of the algorithms scales 

as 1 
q+1 , where q = r + ρ is the smoothness parameter of the solution, with r 

being the highest derivative retained in a Taylor series expansion and 0 ≤ ρ ≤ 1, 
leading to a O(poly(1 )) scaling. Oz et al. [27] improved the accuracy of the 
algorithm by an order of magnitude by using Chebyshev points, but retained the 
overall complexity to O(poly(1 )). Numerical results were demonstrated using 
quantum simulators. 
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35Variational Algorithms: Theory 

With the exception of the Hamiltonian simulation of sparse systems using low-
order Trotter–Suzuki methods and short evolution times for a small number 
of qubits, or Hadamard tests with significant circuit optimization, none of the 
algorithms discussed in the previous chapters can run on contemporary NISQ hard-
ware. This is due to high sensitivity to noise, hardware imperfections, and limited 
physical qubit counts that prevent error correction. In the NISQ era, there is strong 
demand for algorithms that can provide quantum advantage using noisy hardware. 
Variational algorithms have recently gained attention as a hybrid classical-quantum 
approach for algorithms that can operate on NISQ devices. Examples include 
the Quantum Adiabatic Optimization Algorithm (QAOA) [1] for combinatorial 
problems, Variational Quantum Linear Solver (VQLS) [2] for linear systems, 
and the Variational Quantum Eigensolver [3] ground-state preparation in quantum 
chemistry problems. However, the classical-quantum training loop of variational 
algorithms is costly and currently precludes quantum advantage. Optimization is 
problem- and hardware-specific and is not known to generalize. For example, 
[4] shows that VQLS, when trained to solve a 1D Poisson’s problem, does not 
generalize to finer discretizations. 

Variational quantum algorithms are analogous to classical machine learning 
models, but use a quantum ansatz rather than a classical one, and use quantum 
circuits to evaluate the cost function. 

The core ingredients of a variational quantum algorithm are a cost function 
C(θ ), a parametrized quantum ansatz U (θ ), and an optimization method (gradient-
based or gradient-free) [5] as shown in Fig. 35.1.

The cost function encodes the solution of the problem as 

θ ∗ = arg min 
θ 

C(θ)
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Fig. 35.1 Schematic of a variational quantum algorithm optimization loop

where θ is a set of trainable parameters of an ansatz U (θ ), a trainable quantum 
circuit parametrized by θ . The parameters θ can be continuous or discrete. As an 
example, a continuous parameter could be the rotation angle for a Y rotation gate, 
and a discrete parameter could be whether to apply a quantum gate in a circuit or 
not. The cost function can be expressed as 

C(θ ) = f {{ρk}, {Ok}, U (θ)}

where f is some function, {ρk} are input states (training data), and {Ok} are 
observables, or measurements of the quantum circuit. The evaluation of C(θ ) 
is performed using quantum computers (possibly with some classical post-
processing), while the optimization of θ is performed using classical computers, 
leading to a hybrid algorithm. For NISQ hardware, the quantum circuit must fit 
hardware constraints, i.e., limited qubits and shallow depth. Some approaches 
work directly with hardware-level optimization, e.g., microwave pulse shaping for 
superconducting qubits. 

The choice of the ansatz determines the parameters θ . In general, a quantum 
ansatz can be expressed as 

U (θ ) = 
L 

l=1 
Ul( θl)

Many different ansatze have been proposed for various problems, with the 
common goal of efficiency and trainability on NISQ hardware. 

The cost function may be optimized using gradient-based or gradient-free 
approaches. Gradient-based approaches compute the derivatives ∂C(θl ) 

∂θl 
. The deriva-

tive may be approximated using finite differencing. However, “parameter shift”
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rules [6–9] allow exact differentiation of parametrized quantum circuits (for con-
tinuous parameters) analogous to automatic differentiation for classical computing. 
The key idea behind parameter shift rules is that to compute ∂C(θl ) 

∂θl 
, the same quan-

tum circuit is used with a “parameter shift” s ∈ R applied to the parameter θl with 
a multiplier c ∈ R: 

∂C(θ ) 
∂θl 

= c C θ (l) − C θ ( l)

where 

θ (l) k = θk , ∀ k l 
θk + s k = l

Although similar to finite differences in appearance, the parameter shift rule is 
exact. Higher order derivatives may be computed by nesting this rule. Parameter 
shift rules can be computed for any arbitrary circuit with continuous parame-
ters. Hybrid quantum-classical models can combine parameter shift for quantum 
circuits with automatic differentiation for classical parts [5, 10]. 

However, optimization of quantum circuits can suffer from vanishing gradients 
[10, 11]. In these cases, classical derivative-free optimizers like Nelder–Mead [12, 
13] can be used if the parameter space is not too large. Optimization is also sensi-
tive to noise; recent studies suggest SPSA and CMA-ES are more robust in noisy 
settings [14]. 
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36Notable Variational Algorithms: VQE, 
QAOA, and VQLS 

In this chapter, we provide an overview of variational quantum algorithms for 
eigenvalue, combinatorial, and linear system problems. 

Variational Quantum Eigensolver 

The most notable variational quantum algorithm is the variational quantum eigen-
solver (VQE), which was introduced by [1]. VQE seeks the extremal eigenvalues 
of a Hamiltonian by minimizing a cost function defined as an expectation value. 
This approach is fundamental for preparing ground states of quantum systems and 
estimating their properties. As an example, the VQE has been used to compute 
and prepare the ground and excited states and energies of molecules [2–5], which 
is essential in quantum chemistry. 

The VQE cost function is defined as 

ψ(θ  )|H |ψ(θ  ) 0|U (θ )†HU (θ ) |0

where H is typically a sum of Pauli strings, and U (θ ) is a parametrized quantum 
circuit. In quantum chemistry, U (θ ) is often chosen to be a unitary coupled cluster 
(UCC) circuit (or one of its variants). For NISQ devices and general problems, 
hardware-efficient ansatz such as SU(n) are commonly chosen. 

Below, we provide an example where VQE is used to solve a random Hamil-
tonian expressed as a sum of Pauli strings, employing a hardware-efficient SU(2) 
ansatz. Convergence results are shown in Fig. 36.1:

#!/usr/bin/python3
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Fig. 36.1 Convergence of the variational quantum eigensolver

import numpy as np 

import matplotlib.pyplot as plt 

from qiskit.circuit.library import EfficientSU2 

from qiskit.quantum_info import random_pauli, SparsePauliOp 

from qiskit.primitives import StatevectorEstimator 

from scipy.optimize import minimize 

# Define number of qubits 

n = 3
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# Define Hamiltonian as a sum of Pauli strings 

num_paulis = 10 
mypaulis = [SparsePauliOp(random_pauli(n), np.random.rand()) for 

_i in range(num_paulis)] 

hamiltonian = sum(mypaulis) 

# Create VQE ansatz 

ansatz = EfficientSU2(num_qubits=n,reps=3) 

# Define cost function 

def cost_function_generator(circuit,observables): 

def cost_function(params): 

estimator = StatevectorEstimator() 
pub = (circuit, observables, params) 

job = estimator.run([pub]) 
cost = job.result()[0].data[’evs’] 
return cost 

return cost_function 

mycostfunction = cost_function_generator(ansatz,hamiltonian) 

# Define a callback function to track progress of optimization 

cost_history = [] 
def callback_function_generator(cost_history, cost_function): 

def callback(theta): 

cost = cost_function(theta) 
cost_history.append(cost) 

return None 

return callback 

mycallback = callback_function_generator(cost_history, mycost-
function) 

# Create initial guess 

theta = np.zeros(ansatz.num_parameters) 

# Optimize ansatz

result = minimize(mycostfunction,theta,method=’COBYLA’,

callback=mycallback)

# Get exact minimum eignevalue

exact_min_eig = min(np.linalg.eig(hamiltonian.to_

matrix())[0]).real
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# Compute errors 

error = cost_history - exact_min_eig 

# Plot results 

fig, axs = plt.subplots(2,sharex=True) 
fig.suptitle(’VQE Convergence’) 

axs[0].plot(cost_history) 

axs[0].hlines(exact_min_eig,xmin=0,xmax=len(cost_ 

history),colors=’r’,linestyles=’dashed’) 

axs[0].legend([’VQE’, ’Minimum Eigenvalue’]) 

axs[0].set(ylabel=’Cost’) 

axs[1].plot(error) 

axs[1].set_yscale(’log’) 

axs[1].set(xlabel=’Iteration’,ylabel=’Error’)

plt.show()

Variational Quantum Linear Solver 

Variational quantum linear solvers (VQLS) [6] have recently gained significant 
attention. To solve a linear system Ax = b using the VQLS, the system matrix 
needs to be provided as a sum of unitaries: 

A = 
k 

αkU k

and the vector b should be accessible via a unitary state preparation. 

Ub|0 b . 

A parametrized quantum circuit U (θ ) is chosen, with the goal of optimizing θ 
such that 

U θopt |0 x(θ ) x 

The global cost function for the VQLS is defined as 

C̃G x(θ )A†|(I −  |b b|)A|x(θ ) x(θ )|A†A|x(θ ) x(θ )|A†|b b |A|x(θ)

When x(θ )|A†A|x(θ ) is small, C is also small, even if |x(θ ) is not close to 
|b . To avoid this, the cost is normalized by x(θ )|A†A|x(θ ) to get 

CG = 
x(θ )|A†A|x(θ )
x(θ )|A†A|x(θ ) 

− 
x(θ )|A†|b b|A |x(θ)

x(θ )|A†A|x(θ )
= 1 − 

x(θ )|A† b |2
x(θ )|A†A|x(θ )
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This formulation requires evaluating x(θ )|A†|b and x(θ )|A†A|x(θ ) which can 
be computed using the SWAP (or Hadamard) test: 

x(θ )|A†A|x(θ ) 
mn 

α∗
mαn x(θ )|U † mUn| x(θ)

x(θ )|A†|b 2 = 
mn 

α∗
mαn x(θ )|U † m|b b|Un|x (θ)

To address convergence issues related to barren plateaus, the global cost func-
tion is further modified by introducing multiple local cost functions that indirectly 
minimize the global cost function [6]: 

CL x(θ )| 
⎛ 

⎝A†Ub 

⎛ 

⎝ I − 1

n 

n 

j=1 

0j 0j|  ⊗  Ij 

⎞ 

⎠U †A 

⎞ 

⎠ |x(θ)

where 0j is the |0 state on qubit j and Ij is the identity on all qubits except qubit 
j. 

These cost functions are bounded as 

CG, nCL ≥ 
2

κ2 

VQLS has been applied to solve the heat equation in 1D [7, 8], in 2D [9], and 
to potential and Stokes flow in 2D [10]. [9, 10] demonstrate logarithmic scaling 
in 1/ ∈ and N . However, they use the Pauli basis for their matrix, which can have 
O(N ) terms for a 1D discrete Laplacian. [11] provides an efficient tensor product 
decomposition with O(log(N )) terms. 

Quantum Approximate Optimization Algorithm 

The quantum approximate optimization algorithm (QAOA) [12] is a variational 
algorithm designed for combinatorial optimization problems. The problem is typ-
ically formulated as a Quadratic Unconstrained Binary Optimization (QUBO) 
problem: 

arg min 
x∈{0,1}n 

xT Qx + xT b

x ∈ {0, 1}n is a binary string of n bits, Q ∈ RN×N is a matrix, and b ∈ R N
encoding a combinatorial problem. Note that bi can be absorbed into Qii. 

By substituting xi = 1−Z i
2 where Zi is a Pauli-Z operator on the i-th qubit, the 

problem can be reformulated as the Ising Hamiltonian problem: 

HIsing = 
i,j 
ZiZjJij + 

i 
Zihi
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arg min 
|ψ 1,1}⊗n 

ψ |HIsing |ψ 

where |ψ ∈ {−1, 1}⊗n is a string of spin-up (+1) and spin-down (–1) states in the 
{|+z , |−z } basis, J ∈ RN× N is a matrix, and h ∈ RN is a vector. 

Both QUBO and Ising Hamiltonian optimization are NP-hard. Classical heuris-
tics are used for such problems, and QAOA is also a heuristic method, inspired by 
the quantum adiabatic theorem and its discretization. 

For clarity, we will illustrate QAOA using the Max-Cut problem as an example. 
First, we provide an overview of the quantum adiabatic theorem, then introduce 
the Max-Cut problem, and finally formulate QAOA for Max-Cut. 

Quantum Adiabatic Theorem 
The quantum adiabatic theorem states that if a quantum system in its ground state 
evolves slowly enough, it will remain in its ground state. This can be formulated 
mathematically by considering an initial Hamiltonian HI with a known ground 
state, and a final Hamiltonian HF with an unknown ground state. The evolution of 
such a system can be modeled using a time-dependent Hamiltonian H (s). 

H (s) = A(s)HI + B(s )HF

where s ∈ [0, 1 ] quantifies the transition of the Hamiltonian from HI to HF by 
using “scheduling functions” A(s) and B(s) s.t. A(0) B(0) and A(1) B(1). 
An example of such scheduling functions is given in Fig. 36.2. 

Denoting the known ground state of HI as |ψ(0) , according to the Schrodinger 
equation this state will evolve as 

H (s)|ψ(s) = i 
∂

∂t 
|ψ(s) 

Evolving this system adiabatically, or infinitesimally slowly by assigning s = 
0 : t = 0 and s = 1 : lim t → ∞, will guarantee that |ψ(1) will be a ground state

Fig. 36.2 Example of a 
schedule function 
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Fig. 36.3 Evolution of the 
eigenvalues for H (s) with 
one crossing and the 
minimum gap labeled 

of HF . Figure 36.3 presents a visualization of the transition of eigenstates from HI 

to HF . 
Such infinitesimal transitions are not practical. They are dependent on the min-

imum gap between the ground state and first excited state, as shown in Fig. 36.3, 
which may not be known either. Instead, one may develop a heuristic technique 
by attempting to approximately solve this problem by evolving the quantum state 
in finite time. This will result in a loss of the guaranteed ground state, but it may 
still yield high-quality solutions. Furthermore, this evolution can be approximated 
on a digital quantum computer using Trotterization, which will introduce some 
discretization errors. However, in the limit of infinitely many Trotter steps, the 
guarantee can be recovered. 

We finally note that the initial Hamiltonian and final Hamiltonian are also 
referred to as the mixer Hamiltonian and the cost Hamiltonian, respectively. 

Weighted Max-Cut Problem 
The Weighted Max-Cut problem is roughly described as a partitioning of a graph 
into two disjoint graphs. The Max-Cut problem is a specific instance with equal 
weights for all edges. 

We define a graph G as G = {V , E,W } as a set of vertices V , edges E connecting 
V , and a set of weights W associated with each edge. The Max-Cut problem is to 
form a bipartite partition of V , i.e., VA and VB s.t. VA ∪ VB = V , VA ∩ VB = ∅, 
such that the sum of the weights of edges between VA and VB is maximized. 

As an example, consider the graph shown in Fig. 36.4 with 6 vertices and 9 
edges with associated weights.

The Max-Cut solution for this problem is shown in Fig. 36.5, with the edges 
contributing to the sum highlighted in red. Finding the Max-Cut solution for a 
graph is NP-hard. However, classical heuristic approaches can find approximate or 
good-quality solutions.



288 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

Fig. 36.4 Problem graph for 
a weighted Max-Cut problem

Fig. 36.5 Optimal cut with 
the two sets of vertices 
colored 

We can formulate this problem mathematically by assigning 0, 1 to the vertices 
in VA, V B respectively, which leads to the cost function 

C(x) = 
n−1 

i,j=0 
Wijxi 1 − xj =  −  

n−1 

i,j=0 
Wijxixj + 

n−1 

i, j=0
Wijxi

where W is a matrix with entries Wij containing the weights associated with the 
edge connecting vertices i and j. 

For the problem shown in Fig. 36.5, the weight matrix and two equivalent 
optimal solutions (with C xopt = 19) can be written as 

W = 

⎛ 

⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0  2 4 3  
2  0  3  1  
3  0 2  2  

4  1 0  4  2  
2  4  0  

3 2  2 0  

⎞ 

⎟ 
⎟⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

, x = 

⎛ 

⎜ 
⎜⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

0 
1 
0 
0
1
1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1
0
1
1
0
0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

This is readily translated to a QUBO problem with Qij =  −Wij and bi = 
n−1 

i,j=0 
W ij. In the QAOA, we want the cost function to take the form 

ψ |HC |ψ c(ψ)
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where HC is a cost Hamiltonian that is acting on |ψ . To apply the quantum 
adiabatic theorem, we transform the QUBO problem into an Ising Hamiltonian 
such that 

HC |ψ c(ψ)|ψ 

where HC is the cost (or final) Hamiltonian and c(ψ) is the cost associated with 
the state |ψ . To achieve this, we substitute xi = 1−Z i

2 , converting the QUBO 
variables into quantum operators acting on |ψ . 

By substituting xi = 1−Z i
2 in C(x), we get 

C(x) = 
1

4 

n−1 

i,j=0 
QijZiZj − 

1 

2 

n−1 

i=1 
bi + 

n−1 

j=1 
Qij Zi + 

1

4 

n−1 

i,j=0 
Qij + 

1 

2 

n−1 

i=0 
bi 

Since the constant terms 1 
4 

n−1 

i,j=0 
Qij + 1 2 

n−1 

i=0 
bi do not contribute to the 

optimization problem, we may simply drop them to arrive at the cost Hamiltonian 

HC = 
1 

4 

n−1 

i,j=0 
QijZiZj − 

1 

2 

n−1 

i=1 
bi + 

n−1 

j=1 
Qij Z i

We want to evolve a quantum state according to this Hamiltonian, as we 
have discussed previously while introducing the quantum adiabatic theorem. The 
Hamiltonian HC is in a form that can be readily Trotterized as 

e−iγ HC ≈ 
n−1 

i,j=0 
e 

− iγ
4 QijZiZj 

⎛ 

⎝n−1 

i=1 
e 
i γ
2 bi+

n−1 

j=1 
Qij Zi 

⎞ 

⎠ = UZZ (γ )UZ (γ) = U HC (γ )

We note that exponential terms of the form e−iαZiZj can be implemented using 
controlled RZ gates as discussed in Chap. 28: Hamiltonian Simulation Techniques. 

QAOA 
We now have most of the ingredients for the QAOA. We provide a recap before 
proceeding with the remainder. The objective is to optimize a cost function cor-
responding to a combinatorial problem, in this case a Max-Cut problem. We 
approximately optimize this cost function using a finite-time version of the quan-
tum adiabatic theorem, which requires an initial (mixer) Hamiltonian and a final 
(cost) Hamiltonian. The process begins with the known ground state of the initial 
Hamiltonian and evolves it toward the unknown ground state (optimal solution) 
of the final Hamiltonian. The cost Hamiltonian has been discussed earlier; the 
missing piece is the initial Hamiltonian (and its ground state) and the algorithm. 

A commonly used mixer Hamiltonian is 

HM = 
n−1 

i=0 
Xi
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where the Ij gate is implied for i j. 
This Hamiltonian can be exactly exponentiated (since the terms commute) as 

e−iβHM = 
n−1 

i=1 
e−iβX i

It can also be diagonalized using Hadamard gates: 

HM = 
n−1 

i=0 
Xi = 

n−1 

i=0 
HiZiHi = H ⊗n n−1 

i=0 
Zi H⊗n

where H is the Hadamard gate and Zi is the Pauli-Z operator. The ground state is 
the uniform superposition: 

H ⊗n|0 ⊗n 

Given the parametrized mixer Hamiltonian and cost Hamiltonian, we can Trot-
terize the time evolution in discrete steps. The QAOA algorithm proceeds as 
follows: 

1. Prepare the ground state H ⊗n|0 of the mixer Hamiltonian. 
2. Apply the mixer and cost Hamiltonians in alternating fashion for l layers, each 

parameterized by γ1,  γ2, . . . , γl and β1,  β2, . . . , βl . 
3. Update parameters to optimize the expected cost function value. 
4. Measure the qubits at the end to obtain candidate solutions as bitstrings. 

In the limit of infinite layers or infinite Trotter steps, the adiabatic theorem can be 
recovered, which guarantees the optimal solution. There is a rich literature on the 
QAOA and techniques for initializing parameters, which are beyond the scope of 
this book. 

We provide here an example of the QAOA algorithm applied to the weighted 
Max-Cut problem described earlier. 

Using the weight matrix W =  −Q provided above, we can form the cost 
Hamiltonian: 

HC = 
1 

4 

n−1 

i,j=0 
QijZiZj − 

1 

2 

n−1 

i=1 
bi + 

n−1 

j=1 
Qij Z i

The sampled bitstrings with their quasi-probabilities and cost are plotted in 
Fig. 36.6:

#!/usr/bin/python3 

from qiskit.quantum_info import SparsePauliOp 

from qiskit.circuit.library import QAOAAnsatz 

from qiskit.circuit import QuantumCircuit
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Fig. 36.6 Results for the QAOA applied to a Max-Cut problem. The optimal cut has a high 
probability of being sampled

import numpy as np 

from scipy.optimize import minimize 

from qiskit.primitives import StatevectorEstimator as Estimator 

from qiskit.primitives import StatevectorSampler as Sampler 

from matplotlib import pyplot as plt 

# Create a dictionary of all the weights for the vertices 

weights = {(1,2):2, (1,4):2, (1,6):3, (2,4):1, (2,3):3, (3,6):2, 
(3,5):2, (4,6):2, (4,5):4} 

# Create weight matrix W 

n = max([max(key) for key in weights.keys()]) 

W = np.zeros((n,n)) 
for key in weights: 

i,j = key 
W[i-1,j-1] = weights[key]

W[j-1,i-1] = weights[key]
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# Create QUBO problem from weight matrix 

Q = -W 

b = np.zeros((n,1)) 
for i in range(n): 

b[i] = np.sum(W[i,:]) 

# Form Cost Hamiltonian from QUBO problem 

# This will be an Ising Hamiltonian 

string_list = [] 
coeff_list = [] 
for i in range(n): 

for j in range(n): 

if Q[i,j]!=0: 

string = ’I’*n 
string = string[:i] + ’Z’ + string[i+1:] 
string = string[:j] + ’Z’ + string[j+1:] 
string_list.append(string) 

coeff_list.append(Q[i,j]/4) 

for i in range(n): 

coeff = -b[i]/2 

for j in range(n): 

coeff += -Q[i,j]/2 

string = ’I’*n 
string = string[:i] + ’Z’ + string[i+1:] 
if coeff!=0: 

string_list.append(string) 

coeff_list.append(coeff) 

H_c = SparsePauliOp(string_list,coeff_list) 
# At this point using the following: 

# circuit = QAOAAnsatz(cost_operator=H_c, reps=2) 

# will be sufficient. The following lines prepare 

# the mixer Hamiltonian and initial state for 

# completeness of demonstration. 

# Form mixer Hamiltonian 

string_list = [] 
coeff_list = [] 
for i in range(n): 

string = ’I’*n
string = string[:i] + ’X’ + string[i+1:]

string_list.append(string)

coeff_list.append(1)

H_m = SparsePauliOp(string_list,coeff_list)

# Quantum circuit to prepare initial state
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initial_state = QuantumCircuit(n) 
initial_state.h(range(n)) 

# Create QAOA ansatz 

circuit = QAOAAnsatz(cost_operator=H_c, mixer_operator=H_m, ini-

tial_state=initial_state, reps=5) 

# Define QAOA cost function, 

# return with -ve sign since we are maximizing using a scipy minimizer 

def QAOA_cost(parameters, circuit, H_c, estimator): 

pub = (circuit, H_c, parameters) 

job = estimator.run([pub]) 
result = job.result()[0] 
cost = result.data.evs 
cost_history.append(cost) 

return -cost 

# Set up Estimator primitive for optimization 

estimator = Estimator() 
# Track optimization progress 

cost_history = [] 
# Guess initial parameters 

init_params = np.ones(len(circuit.parameters)) 

# Maximize the cost (cost returns -ve) 

result = minimize(QAOA_cost, 
init_params, 

args=(circuit, H_c, estimator), 

method=’L-BFGS-B’, 

tol=1e-5, 

) 

# Set up sampler primitive to get optimized results 

sampler = Sampler() 

# Set up optimized circuit for sampling 

optimized_circuit = circuit.assign_parameters(result.x) 
optimized_circuit.measure_all() 

pub = (optimized_circuit)
# Sample circuit

shots = 100

job = sampler.run([pub],shots=shots)

counts = job.result()[0].data.meas.get_counts()
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# Sort by number of counts 

sorted_counts = [(key, counts[key]) for key in sorted 

(counts,key=counts.get)] 

# Compute costs of each counts bitstring 

def get_cost_from_string(string, Q, b): 

x = [int(i) for i in string] 

cost = np.einsum(’i,ij,j->’,x,Q,x) + np.einsum(’i,ij->’,x,b) 
return cost 

costs = [(key,get_cost_from_string(key,Q,b)) for (key,value) in 
sorted_counts] 

# Plot results 

fig, axes = plt.subplots(1,2, sharey=True, figsize=(10, 8)) 

axes[0].barh([i for (i,j) in sorted_counts],[j/shots for (i,j) in 

sorted_counts], align=’center’) 

axes[0].invert_xaxis() 

axes[0].set_xlabel(’Quasiprobability’) 

axes[0].set_ylabel(’Bitstrings’) 

axes[0].yaxis.tick_right() 

axes[1].barh([i for (i,j) in costs],[j for (i,j) in costs],

align=’center’)

axes[1].set_xlabel(’Cost’)

axes[1].set_xticks(list(range(0,20,1)))

plt.show()

Variational algorithms are flexible and can be applied to a variety of other prob-
lems. For example, [13] presents a variational fast-forwarding technique that uses 
a Trotter circuit to train a fast-forwardable variational ansatz, reducing simulation 
time and enabling longer Hamiltonian simulations on NISQ hardware. Variational 
algorithms have also been explored for financial applications [14], cosmological 
simulations [15], vehicle routing problems [16], and nonlinear PDEs [17, 18]. For 
instance, [4] demonstrates the use of multiple copies of variational quantum states 
to treat nonlinearities, showing exponential efficiency over matrix product states 
and presenting experimental results. [5] introduces a Chebyshev feature map for 
nonlinear PDEs, with simulation results for Navier–Stokes equations. 

However, the classical cost of optimizing variational circuit parameters can 
limit quantum advantage for some problems. In the worst case, optimizing varia-
tional quantum ansatze is NP-hard in general due to exponentially increasing local 
minima with the number of parameters and the optimization landscape exhibiting 
barren plateaus and narrow gorges [19]. Despite these drawbacks, variational quan-
tum algorithms are still expected to find utility in the fault-tolerant regime, e.g., as 
a method for preparing approximate ground states for quantum phase estimation.
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Part VII 

Applications, Future Directions, and Open 
Problems 

This part presents real-world applications, emerging directions, and unresolved 
challenges in quantum computing, with an emphasis on engineering, scientific 
computing, and finance. The chapters in this part bridge the theoretical and algo-
rithmic frameworks developed in previous parts to their deployment in practical 
scenarios. 

Chapter 37, “Applications in Engineering and Scientific Computing”, sur-
veys proof-of-concept demonstrations and prototype workflows where quantum 
algorithms have been used for simulation, optimization, and data analysis in 
engineering contexts. 

Chapter 38, “Quantum Machine Learning”, introduces the key models, tech-
niques, and practical considerations for applying quantum algorithms to learning 
and inference tasks, with an emphasis on the interface between quantum and 
classical computation. 

Chapter 39, “Applications in Finance”, explores the use of quantum algorithms 
for problems in financial modeling, including derivatives pricing and portfolio 
optimization, highlighting both current capabilities and outstanding barriers. 

Chapters in this part are intended to provide a realistic appraisal of where quan-
tum computing stands in relation to practical applications, emphasizing not only 
current achievements but also the open problems and research directions that will 
define the next phase of progress in the field.

https://doi.org/10.1007/978-3-032-03325-3_37
https://doi.org/10.1007/978-3-032-03325-3_38
https://doi.org/10.1007/978-3-032-03325-3_39


37Applications in Engineering 
and Scientific Computing 

In the previous part, algorithms for ordinary differential equations and partial dif-
ferential equations were discussed extensively. Here, we focus on use cases where 
quantum computers may accelerate numerical solutions, distinguishing between 
problems that require simulating quantum mechanics and those that do not— 
roughly separated by nanoscale (quantum) and micro-to-macroscale (classical) 
problems. 

We begin by considering problems involving the simulation of quantum 
mechanics. Quantum mechanical models provide the most accurate description of 
many systems, but are typically computationally intractable on classical computers 
without significant simplifications. A central example is the non-relativistic elec-
tronic structure problem, which seeks the minimum eigenvalue (and corresponding 
eigenstate) of a system of interacting electrons and nuclei, whose Hamiltonian is 
typically in atomic units: 

H =  −  
N 

i=1

1

2
∇2 
i − 

M 

A=1 

1

2MA 
∇2 
A − 

N 

i=1 

M 

A=1 

Z A
riA 

+ 
N 

i=1 

N 

j>i 

1

rij 
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M 

A=1 

M 

B>A 

ZAZ B
RAB 

where MA are nuclear masses, ZA are nuclear charges, N is the number of electrons, 
and M is the number of nuclei. Using the Born–Oppenheimer approximation to 
“freeze” the nuclei, one gets the electronic Hamiltonian 

Helec =  −  
N 

i=1

1

2 
∇2 
i − 

N 

i=1 

M 

A=1 

Z A
riA 

+ 
N 

i=1 

N 

j>i 

1

rij 

This is a high-dimensional problem, scaling as 3N . Discretizing the space 
rapidly becomes infeasible. As an example, for a system with 20 electrons dis-
cretized with 10 grid points per spatial dimension, the state space is O 1060 .
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Instead, the electronic structure problem is typically recast in the “second-
quantization” framework [1] which is conducive to method development for both 
classical and quantum computers. 

The electronic structure problem enables prediction of key material proper-
ties—such as elastic moduli and thermal conductivities—from first principles, and 
forms the basis of multiscale modeling. Classical approaches like density func-
tional theory (DFT) can treat systems with up to ∼ 102 − 10 3 electrons, but DFT 
is unreliable for strongly correlated electrons. Thus, quantum electronic structure 
problems are among the most likely early beneficiaries of quantum advantage, as 
quantum computers are natively suited to such tasks. 

We now turn to micro-macroscale problems, generally governed by classical 
(often non-unitary) differential equations. Here, quantum algorithms for differen-
tial equations can potentially provide a speedup. However, loading classical data 
into a quantum computer (state preparation) and extracting results (readout) present 
significant data movement bottlenecks. 

For example, in a finite element boundary value problem, one can either (a) dis-
cretize classically and upload the data to a quantum computer, or (b) construct the 
discretized problem directly on the quantum device. The latter is preferable from 
a data movement and resource standpoint. Nonetheless, Shannon entropy funda-
mentally limits how much information can be encoded and loaded from classical 
descriptions. 

It is also critical to noting that quantum computers are suited for computing 
select properties or functionals of the solution, not the entire solution vector. While 
much work has focused on preparing quantum states representing the solution, 
efficient extraction of useful observables from these states remains a significant 
challenge. 

One particularly interesting application of quantum computers is in multiscale 
modeling. In multiscale workflows spanning quantum to macro scales, a quan-
tum computer may accelerate nanoscale computations—e.g., providing material 
properties to classical solvers at larger scales. Alternatively, one can envision end-
to-end quantum workflows, minimizing data movement, though such scenarios are 
still aspirational. 
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Machine learning (ML) has evolved to become a cornerstone of modern computa-
tional methods. Before delving into quantum machine learning (QML), we provide 
a brief overview of ML and important concepts linking classical ML to QML. 

The goal of ML is to develop techniques for computational tasks without 
explicitly programming the solution. Instead, ML relies on data to “learn” the 
task. 

ML is broadly categorized into three problems: 

• Supervised learning 
• Unsupervised learning 
• Reinforcement learning. 

Supervised learning uses labeled datasets—pairs of inputs and desired outputs—to 
train a model. Unsupervised learning trains models on unlabeled data to discover 
patterns, groupings, and correlations. Reinforcement learning trains an agent to 
develop a policy for coordinating a task, using feedback from the environment and 
its current state. 

ML models are used for a range of computational tasks, including. 

• Classification: e.g., classifying tumors as benign or malignant using medical 
images. 

• Regression: e.g., predicting energy consumption using weather data. 
• Clustering: e.g., market segmentation to identify key customer groups. 
• Generation: e.g., generate metamaterial cell geometries satisfying a target 

stress–strain response [1].
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Fig. 38.1 Various 
combinations of quantum/ 
classical datasets and ansatze 
with examples 

ML models span a broad spectrum, ranging from explainable techniques such 
as linear regression and support vector machines to more opaque black-box 
techniques like deep neural networks. 

A unifying challenge of ML models is overparameterization. When an ML 
model has too many free parameters, it tends to overfit the data, performing well on 
training data but poorly on new, unseen data. Overfitting reduces generalizability. 

To address overfitting, a combination of regularization and inductive bias is 
used. Regularization penalizes model complexity, reflecting Occam’s razor. Induc-
tive bias refers to the predisposition of certain models toward a subset of possible 
solutions. For example, convolutional neural networks are well-suited for image 
processing due to translation invariance, locality, and hierarchical structure. 

Major challenges in classical ML include generalizability, overfitting, and 
underfitting. A growing concern is the computational cost and power consump-
tion, especially for large models—e.g., training modern large language models 
(LLMs) can consume as much power as a small city. 

Quantum machine learning (QML), much like classical machine learning, 
encompasses a broad array of models and methodologies. However, in QML, there 
is a foundational distinction that does not appear in the same way in classical ML: 
Both the model (ansatz) and the data can be either classical or quantum. 

• Ansatz here refers to the structure of the model or the functional form of the 
mapping from input to output (for example, a neural network, a support vector 
machine, and a parameterized quantum circuit). 

• Data refers to the information that the model is trained on or the ground-truth 
process mapping the inputs to outputs. 

This gives rise to several possible scenarios (Fig. 38.1):
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1. Classical ansatz, classical data: The standard scenario in classical machine 
learning (e.g., training a neural network on images). 

2. Quantum ansatz, classical data: Quantum models (such as parameterized 
quantum circuits) trained or used on data originating from classical sources. 

3. Classical ansatz, quantum data: Classical models that process data generated 
from quantum experiments or quantum sensors (less common, but possible). 

4. Quantum ansatz, quantum data: Quantum models trained on quantum data— 
this is considered the most promising avenue for realizing a true quantum 
advantage, as quantum data can exhibit structures or correlations that are 
exponentially difficult to represent or process classically. 

In summary, the first step in characterizing any QML approach is to specify. 

• Whether the data is classical (bitstrings, real-valued vectors, etc.) or quantum 
(quantum states, results from quantum experiments). 

• Whether the model/ansatz is classical (e.g., a traditional neural network) or 
quantum (e.g., a quantum circuit with trainable gates). 

This classification is fundamental because the potential advantages and challenges 
of QML depend crucially on these choices. For instance, quantum models are 
expected to provide their greatest benefits when both the data and the model 
are quantum, due to the exponential complexity of quantum information when 
represented classically. 

We note that the application of various quantum algorithms, such as QLSAs, 
to machine learning may also be considered instances of QML. In this chapter, 
we focus on instances of QML that are more complex than a direct application 
of general quantum algorithms to classical machine learning algorithms. With this 
motivation, in the remainder of this chapter, we will discuss various aspects and 
considerations of QML in general, along with various examples and configurations 
of instances of QML. 

We begin our discussion with one of the earliest and most conceptually simple 
QML instances: quantum support vector machines [2]. 

Support vector machines are supervised ML models for classifying data by 
mapping the input data X : x ∈ Rn to a higher dimensional space using a kernel 
φ(x) ∈ R m, where m ≥ n, and then projecting onto R by computing the inner 
product k : φ(xi),  φ  xj ∈ R. We denote the labels of each xi as yi s.t. Y : y ∈ 
{+1, − 1}. This method is referred to as a kernel trick. 

A data point can then be classified as 

y = sgn 
n 

i=1 
wiyik xi, xj ∈ {+1, −1}

Training a support vector machine with the kernel trick requires computation 
of the kernel matrix K where Kij = k xi, x j to optimize wi. 

Since φ(·) resides in a high-dimensional space, computing the inner products 
φ(xi),  φ  xj may be prohibitively expensive unless the kernel function φ(·) is
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Fig. 38.2 A one-layer 
quantum neural network 

chosen carefully. In a quantum support vector machine, the kernel matrix K is com-
puted using a quantum computer, and wi are optimized using classical methods. 
One may compute 

φ(xi),  φ  xj = 0|U (xi)†U xj |0

where U (·) is a parametrized quantum circuit. This expands the choice of kernels 
beyond classically tractable kernels. 

Next, we consider principal component analysis (PCA), an elementary tech-
nique for unsupervised learning. Given a dataset X , where each column of X 
corresponds to a variable, the columns can be standardized as X̃i = Xi−μ i

σi 
, and the 

covariance matrix can be computed as 

C = X̃ T X

An eigendecomposition C = V V T yields principal components (the largest 
eigenvalues and their eigenvectors), reducing the dataset and revealing its main 
correlations. A quantum algorithm for PCA has been developed [3]. Since the 
proof uses density matrix formalism, we omit implementation details here. 

We now consider the more “general” form of QML: Parametrized quantum 
circuits with associated cost functions as introduced in Chap. 35: Variational 
Algorithms: Theory Fig. 38.2. 

A key ingredient in QML is encoding data as a quantum state. Beyond basis, 
amplitude, and phase encoding, other encodings include angle encoding, dense 
encoding, and feature maps based on Z, ZZ, and Pauli rotations. Data encoding 
for quantum computations remains an active area of research. 

Training parameterized quantum circuits presents several difficulties [4]. Like 
classical ML models, these circuits can have many local minima, making global 
optimization NP-hard. Overparameterized circuits may eliminate local minima but 
risk overfitting. 

The optimization landscape of parameterized quantum ansatzes can exhibit bar-
ren plateaus (exponentially vanishing gradients) and narrow gorges (exponentially 
lower global minima) as the parameter count increases. Remedies include using 
ansatze with greater inductive bias, measuring local rather than global observables, 
and ensuring measurement qubits are not highly entangled with hidden layers. 

Noise in NISQ hardware further complicates optimization; increasing circuit 
depth amplifies the effects of noise and suppresses meaningful features in the 
optimization landscape.
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Before proceeding further, we state here a remarkable result in quantum 
machine learning from [5]. Most supervised quantum machine learning models 
are (equivalent but possibly sub-optimal) quantum kernel models. This profound 
result can be summarized as follows. 

Theorem Given a data encoding. |φ(x) for a classification problem. For most 
quantum machine learning models, the model obtained using quantum support vector 
machines is optimal in the m-dimensional subspace spanned by φ(·) and tractable. 
Training variational ansatzes on the same embedding |φ(x) does not guarantee 
an optimal model in this subspace, even if the non-convex cost function is globally 
optimized, which is intractable (NP-hard) in general. 

This result emphasizes the importance of the data embedding |φ(x) on the 
expressibility and performance of QML models. We note that “tractable” here 
does not imply efficient training or inference. 

Recent work has expanded the scope of QML to generative diffusion models. 
Classical diffusion models are computationally expensive due to an iterative appli-
cation of a neural network (typically a denoising model like a U-Net). Diffusion 
models transform a Gaussian noise distribution into a target distribution matching 
the training dataset. While this process is not necessarily unitary, the manipulation 
of probability distributions is a particularly interesting and powerful application 
for quantum computers. Quantum diffusion models aim to replace the denoising 
model with a trainable quantum circuit [6, 7]. 

QML may also be a hybrid between classical and quantum models. While QML 
models are restricted to unitary (linear) transformations and (linear) projections, 
classical ML models rely heavily on nonlinear operations for expressibility. 

QML models typically have the drawback of requiring access to a quantum 
computer for both training and inference, and quantum computers are a scarce and 
valuable resource in the NISQ era. To overcome this barrier, a classical “shadow 
model” approach has been proposed, enabling deployment of trained models on 
classical computers [8]. 

QML is an emerging field and is largely driven by experimental and empirical 
evidence. For in-depth analysis and investigation of the scalability of QML, high-
quality hardware is required. 

Beyond utilizing quantum computing as a tool for machine learning, machine 
learning has also been successfully applied to improve the fidelity of quan-
tum computing. Machine learning models have been developed to optimize 
transpilation and identify more effective error-correction schemes [9]. 
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39Applications in Finance 

While scientific and engineering computation is notorious for its reliance on large-
scale and high-performance computing, the financial industry also contributes 
significantly to the global computational workload. Quantum computing has the 
potential to accelerate several problems in finance. In this chapter, we introduce 
key financial problems where quantum speedups may be possible. 

Before presenting computational problems in finance, we introduce founda-
tional concepts in finance. Assets are resources with economic value that can be 
owned or controlled. These include tangible assets (e.g., gold, wheat, crude oil), 
and intangible financial instruments such as currency, stocks, options, derivatives, 
and contracts. 

Assets are typically traded on markets, where buyers and sellers determine 
prices. A financial portfolio is simply a collection of different investments. 

Financial derivatives are contracts whose value is “derived” from underlying 
assets. In its simplest form, the underlying asset for a derivative could be a tangible 
asset or commodity. A more complex derivative can be a mix of tangible assets, 
commodities, stocks, options, sub-derivatives, and many other forms of financial 
instruments. Even a loan contract can be traded, making it a financial instrument 
in itself. Thus, the term "derivative" broadly covers any combination of financial 
instruments with monetary value. 

All assets involve risk—the possibility that its value may diminish, disappear, 
or even become a liability. For example, fiat currencies are subject to the stability 
of the governments backing them, among other factors. An example of an asset 
with a risk of becoming a liability is a financial contract to receive barrels of crude 
oil. During the 2020 coronavirus pandemic, the value of oil futures contracts fell 
below zero due to impending penalties that contract owners would have to pay for 
disruptions in the oil supply chain leading to an oversupply. Generally, high risk
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comes with the possibility of high reward. For the same potential return, a rational 
investor will always prefer lower risk. 

To make informed decisions and maximize gains, predicting market trends 
and optimizing investments are crucial. Better predictions and optimization give 
market players a competitive advantage. Beyond market prediction and portfolio 
optimization, financial institutions facilitate a tremendous number of transactions 
around the clock. To minimize their losses, it is important to detect any fraudulent 
transactions. These tasks are typically computationally expensive, and quantum 
computing has the potential to accelerate them. We provide below a brief intro-
duction to these computational problems, and refer readers to a variety of excellent 
references on these topics [1–7]. 

Derivatives Pricing and Risk Management 

The prices of a derivative’s components fluctuate and may be correlated. A stochas-
tic model S : {0, 1}r → {0, 1}n, e.g., the Black–Scholes model, predicts the state 
of the market. A payoff function f : {0, 1}n → R evaluates the derivative’s value 
(V ) at a given market state: 

V = Ex∼S f (x )

Because these models are high-dimensional and stochastic, analytic solutions 
are typically infeasible, so Monte Carlo methods are used. Quantum Monte Carlo 
may be used to model and estimate predicted prices with a theoretical quadratic 
speedup by encoding S as an algorithm A and f as a rotation operation R as 
discussed in Chap. 25: Quantum Monte Carlo. 

This quadratic speedup has several implications. Reducing the number of sam-
ples needed to predict the market can potentially allow faster prediction, which is 
crucial in high-frequency trading. The other implication is that the same number 
of samples yields a prediction with a quadratically smaller confidence interval, 
improving the fidelity of the prediction (up to the fidelity of the model). Further-
more, quantum computing may even allow the simulation of more complex and 
precise models that are simply intractable using classical computers. 

Portfolio Optimization 

Portfolio optimization seeks the best allocation of assets to maximize return and 
minimize risk. Let N be the number of assets, with prices p ∈ R N , and expected 
returns r ∈ R N . The investments may fluctuate in time and may be correlated with 
each other, giving rise to the covariance matrix ∈ RN × N . The asset weights 
w ∈ RN are chosen subject to. 

a budget: ξ = pTw.
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expected returns: μ = rTw. 

and risk: wT w. 

Given a desired return μ with the constraint that all of the budget is invested, a 
convex quadratic optimization problem can be formed as 

min 
w∈RN 

wT w : ξ = pT w,  μ  = rTw

This can be solved using the method of Lagrange multipliers as the linear 
system. 

⎡ 

⎣ 
0  0  μT 

0  0  pT 

r  p  

⎤ 

⎦ 

⎡ 

⎣ 
η 
θ 
w 

⎤
⎦ =

⎡
⎣

μ

ξ

0

⎤
⎦

It has been suggested that quantum linear system algorithms may be used to 
optimize this problem. This variant of portfolio optimization is often referred to 
as an “unconstrained” optimization problem. 

One may impose further constraints, e.g., a positivity constraint to enforce wi ≥ 
0 ∀ i, i.e., the investor may not sell assets they do not own, which leads to 

min 
w∈RN 

wT w : ξ = pT w,  μ  = rT w ,wi ≥ 0 ∀ i

which is a constrained convex optimization problem that can also be solved in 
polynomial time on a classical computer. However, quantum algorithms have been 
proposed for a polynomial speedup. 

Integer constraints drastically complicate the solution of portfolio optimization 
problems. As an example, one may impose a constraint on the total number of 
investments, i.e., the Hamming weight y = 

i 
bool(wi > 0) ≤ K where bool x = 0 

for x = 0 and bool x = 1 otherwise. This leads to an optimization problem 

min 
w∈RN 

wT w : ξ = pT w,  μ  = r Tw, y ≤ K

which is an NP-hard mixed integer programming problem. One may attempt to 
approach such combinatorial problems using heuristic methods like QAOA. 

Finally, we note that classical machine learning models are often employed for 
fraud detection, for which quantum machine learning models are an active area of 
research. 

The examples provided in this chapter represent only a small subset of financial 
problems that may benefit from quantum computing. A wide array of challenges in 
asset pricing, risk assessment, transaction settlement, option pricing under complex 
market dynamics, high-frequency trading strategies, and real-time fraud detection 
could potentially be reformulated for quantum algorithms. However, the funda-
mental questions remain: Can these formulations be implemented with quantum
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resources more efficiently than the best classical approaches? And, critically, can 
quantum computers deliver consistent and actionable value at scale within the 
constraints and complexities of real-world financial markets? The answer to these 
questions is not merely academic—it is the billion (or perhaps trillion) dollar ques-
tion that will ultimately determine the true impact of quantum computing on the 
financial industry. 
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