
Osama M. Raisuddin
Suvranu De

Quantum
Computing
for Engineers

Raisuddin · De
Quantum

 Com
puting for Engineers

Quantum Computing for Engineers

Osama M. Raisuddin · Suvranu De

Quantum Computing
for Engineers

Osama M. Raisuddin
Future of Computing Institute
Rensselaer Polytechnic Institute
Troy, NY, USA

Suvranu De
Florida A&M University-Florida State
University College of Engineering
Tallahassee, FL, USA

ISBN 978-3-032-03324-6 ISBN 978-3-032-03325-3 (eBook)
https://doi.org/10.1007/978-3-032-03325-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2026

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If disposing of this product, please recycle the paper.

https://doi.org/10.1007/978-3-032-03325-3

Preface

Quantum computing is a rapidly emerging field. As researchers entering the field
from outside traditional domains, such as theoretical physics or computer science,
we found the landscape both rich and fragmented—dense with promise but dif-
ficult to navigate without a cohesive, application-oriented framework. This book
was born from our own attempts to cross that threshold from classical computa-
tional methods into quantum computing—not as physicists, but as computational
engineers—and to build a practical bridge for others who wish to do the same.

While several introductory texts exist, they often assume prior exposure to
quantum theory or computational complexity. Our aim is different: to build a
bridge from classical engineering and scientific computing to quantum algorithms,
without sacrificing technical depth. This book adopts an applied, algorithmic
perspective, integrating mathematical foundations, computational models, and
real-world applications.

The book is organized into seven parts, each divided into focused chapters.
These chapters are intended to be modular and self-contained, allowing instructors
or readers to adapt them to different learning paths or interests:

• Part I: Mathematical and Computational Preliminaries
Foundational material in linear algebra, probability, and numerical methods,
tailored to the quantum context.

• Part II: A Brief Introduction to Quantum Mechanics
Core quantum phenomena presented through key experiments, emphasizing
physical intuition.

• Part III: Elements of Quantum Computing
The computational framework of quantum computing—qubits, gates, circuits,
and measurement.

• Part IV: Programming Quantum Computers
Practical aspects of working with quantum systems, including software stacks,
noise, and available libraries.

• Part V: Algorithmic Primitives, Subroutines, and Frameworks
Reusable algorithmic components that form the building blocks of more
advanced methods.

v

vi Preface

• Part VI: Quantum Algorithms
Complete quantum algorithms for solving problems in linear algebra, differen-
tial equations, and optimization.

• Part VII: Applications, Future Directions, and Open Problems
Case studies in engineering and finance, along with discussions on open
challenges and research frontiers.

Each chapter develops a coherent topic, moving from concept to method to appli-
cation, often supported with example code or pseudocode. Conceptual explanations
are supplemented with figures, algorithmic breakdowns, and Python-based imple-
mentations using Qiskit. Where relevant, mathematical derivations clarify the
underlying logic, and code examples reinforce the connection between theory and
practice. Our goal is to equip readers with both the theoretical foundation and
practical tools necessary to engage with quantum computing in an engineering
context, whether for research, development, or curriculum design.

By the end of this book, readers will have a solid understanding of the prin-
ciples of quantum computation, be able to model and implement core quantum
algorithms, and critically assess where quantum methods can offer computational
advantages. They will also gain familiarity with quantum programming environ-
ments and be prepared to pursue further work in both applied and theoretical
directions.

The book assumes familiarity with undergraduate-level linear algebra, prob-
ability theory, algorithmic reasoning, and computational problem-solving. Prior
exposure to quantum mechanics is not required; the essential physical principles
are introduced in Part II. Familiarity with Python programming is recommended
for engaging with the hands-on components.

All code examples in this book use Python and the Qiskit software stack. Python
was selected for its widespread use in scientific and engineering computing, and
Qiskit offers a well-supported platform for constructing and simulating quantum
circuits. While Qiskit adopts little-endian indexing for qubits, we retain big-endian
notation in equations and figures for mathematical clarity. These conventions are
made explicit where relevant.

Supplementary code and figures are available at https://github.com/osamarais/
QuantumComputingForEngineers. These resources are designed to support both
independent learners and instructors using this book in the classroom.

Suggested Paths for Different Readers

This book is intended to be accessible to a broad engineering and scientific audi-
ence with a background in linear algebra and basic programming. Readers with
different goals may choose to navigate it differently:

https://github.com/osamarais/QuantumComputingForEngineers
https://github.com/osamarais/QuantumComputingForEngineers

Preface vii

• For engineering students and newcomers to quantum computing, Parts I–III
provide the necessary foundation, and Parts IV–V introduce core programming
and algorithmic tools.

• For researchers and advanced practitioners, Parts V–VII offer in-depth treat-
ments of quantum algorithmic frameworks and applications, with references to
the underlying theory where needed.

• For instructors, each chapter can serve as a standalone module in an advanced
undergraduate- or graduate-level course. The modular structure allows for flex-
ible integration into existing curricula in computing, applied mathematics, or
engineering.

We hope this book serves as both a foundation and a launchpad for those begin-
ning their journey into quantum computing, and for those aiming to apply it
meaningfully in engineering and scientific domains.

Troy, NY, USA
Tallahassee, FL, USA

Osama M. Raisuddin
Suvranu De

Contents

Part I Mathematical and Computational Preliminaries

1 Linear Algebra and Probability . 3
Vectors, Bras, Kets, and Dirac Notation . 4
Matrices . 6
Rotation and Reflection Matrices . 8
Pauli Matrices and Pauli Basis . 9
Vector and Matrix Norms . 9
Condition Number . 10
Projectors . 10
Eigenvalue Problems . 11
Singular Value Decomposition . 12
Linear Systems of Equations . 13
Linear Iterative Methods: Stationary Point Iterations 14
Krylov Subspace Methods . 14
Kronecker Products . 15

2 Polynomial Approximations . 17
Approximation Around a Point . 17
Approximation Over an Interval . 18
Analytic Functions of Matrices . 19
Matrix Exponentiation . 20
References . 21

3 Theory of Computing . 23
Automata and Turing Machines . 23
Variants of Turing Machines . 29
Universal Circuit Families . 31
References . 32

ix

x Contents

4 An Overview of Practical Classical Computing . 33
Transistors as Physical Logic Gates . 33
Combinational Circuits . 36
Sequential Circuits . 37
Memory Elements . 39
CPU Architecture . 42
Computer Programming . 46
Progress in Classical Computing . 50
References . 52

5 Information and Complexity Theory . 55
Classical Decision Problems and Complexity Classes 55
Probabilistic and Quantum Complexity Classes . 58
Information is Physical . 60
References . 61

Part II A Brief Introduction to Quantum Mechanics

6 A Gentle Introduction to Quantum Mechanics . 65
References . 67

7 The Stern–Gerlach Experiment . 69
Beam Source . 69
Electron Spin . 69
Stern–Gerlach Device and Detector . 70
Stern–Gerlach Experiments . 71

Experiment 1 . 71
Experiment 2 . 72
Experiment 3 . 73
Experiment 4 . 73

References . 75

8 Photon Polarization . 77
Experiment 1 . 77
Experiment 2 . 77
Experiment 3 . 77
Experiment 4 . 79

Part III The Quantum Computing Model

9 Qubits, Quantum Registers, and Quantum Gates 85
Qubits . 85
Registers of Qubits . 87
Quantum Gates . 89
References . 93

Contents xi

10 Quantum Measurements and Circuits . 95
Measurement Operators . 95
Bitstring Sampling . 97
Quantum Circuits . 98
Principle of Deferred Measurement . 100
References . 100

11 Superposition and Entanglement . 101
Reference . 105

12 Classical and Reversible Computation . 107
Classical Computation on Quantum Computers . 107
Reversible Computing . 108
Quantum Oracles . 110
References . 112

13 Access Models and Data Representation . 113
Sparse Access Model . 115
Block-Encoding Model . 115
Hermitian Dilation . 117
Pauli Basis and Decomposition . 117
References . 120

14 Limitations of Quantum Computers . 123
References . 124

15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms 127
Deutsch–Jozsa Algorithm . 127
Bernstein–Vazirani Problem . 131
Simon’s Problem . 133
Hidden Subgroup Problem . 135
References . 136

Part IV Programming Quantum Computers

16 The Quantum Computing Stack . 139
Error Suppression . 141
Error Mitigation . 142
Error Correction . 142
References . 143

17 Libraries for Quantum Computing . 145
References . 146

xii Contents

Part V Algorithmic Primitives, Subroutines, and Frameworks

18 Phase Kickback . 151
Reference . 154

19 Quantum Fourier Transform . 155
Reference . 158

20 Quantum Phase Estimation . 159
Reference . 163

21 Trotterization . 165
References . 172

22 Linear Combination of Unitaries . 175
Reference . 177

23 Qubitization and Quantum Signal Processing . 179
Qubitization . 179
Quantum Signal Processing . 180
Quantum Eigenvalue Transformation and Quantum Singular
Value Transformation . 182
References . 183

24 Amplitude Amplification and Estimation . 185
Quantum Amplitude Amplification . 185
Quantum Amplitude Estimation . 190
References . 192

25 Quantum Monte Carlo . 193

26 Matrix-Vector Multiplications and Affine Linear Operations 197
Matrix-Vector Multiplication Using Block-Encoding 197
Sequence of Matrix-Vector Multiplications . 198

Compression Gadget . 198
Uniform Singular Value Amplification . 199

Affine Linear Operations . 201
Block-Matrix Multiplication . 202
Post-processing and Boosting Success Probabilities 202

References . 203

Part VI Quantum Algorithms

27 Expectation Value Estimation . 207
Pauli Diagonalization . 207
Hadamard Test . 215

Contents xiii

Quantum Amplitude Estimation . 219
SWAP Test . 220
References . 222

28 Hamiltonian Simulation Techniques . 223
Trotter Methods . 224
Taylor Series Approximation . 224
Quantum Signal Processing . 225
References . 226

29 Eigenvalue Problems . 229
Krylov Methods . 229
References . 230

30 Quantum Linear System Algorithms: Direct Methods 231
HHL Algorithm . 233
LCU-Based Methods . 233
Quantum Signal Processing . 234
References . 241

31 Quantum Linear System Algorithms: Iterative Methods 243
References . 258

32 Quantum Ordinary Differential Equation Algorithms:
Block-Matrix Algorithms . 259
References . 264

33 Quantum Ordinary Differential Equation Algorithms:
Time-Marching Algorithms . 267
References . 269

34 Quantum Partial Differential Equation Algorithms 271
References . 274

35 Variational Algorithms: Theory . 277
References . 279

36 Notable Variational Algorithms: VQE, QAOA, and VQLS 281
Variational Quantum Eigensolver . 281
Variational Quantum Linear Solver . 284
Quantum Approximate Optimization Algorithm . 285
References . 295

Part VII Applications, Future Directions, and Open Problems

37 Applications in Engineering and Scientific Computing 299
Reference . 300

xiv Contents

38 Quantum Machine Learning . 301
References . 305

39 Applications in Finance . 307
Derivatives Pricing and Risk Management . 308
Portfolio Optimization . 308
References . 310

Part I

Mathematical and Computational
Preliminaries

This part provides a focused overview of the mathematical foundations required to
engage with quantum computing in the context of this book. The Dirac notation is
adopted from the outset, and concepts are introduced in chapters with an emphasis
on their relevance to quantum algorithms, rather than as exhaustive treatments.

The first few chapters provide an overview of some key mathematical concepts
required for the remainder of this book. These chapters are meant as a refresher,
not a comprehensive course. Readers seeking a deeper dive into mathematics may
wish to consult standard texts in those areas. Our focus is on presenting just enough
background to support the development of later topics. We also provide context
and motivation for each concept, highlighting connections to quantum computing
or quantum physics. Readers are encouraged not to dwell too deeply on these
connections at this stage; many will be revisited and expanded upon in later parts.
This part builds on the following chapters.

Chapter 1, “Linear Algebra and Probability”, presents the essential mathemat-
ical tools—linear algebra and probability—that form the backbone of quantum
computation.

Chapter 2, “Polynomial Approximations”, introduces techniques for approxi-
mating functions with polynomials, both at a point and over an interval, which are
foundational for understanding several advanced quantum algorithms.

Chapter 3, “Theory of Computing”, introduces fundamental concepts from clas-
sical computation, including Turing machines and universal circuit families, along
with examples of computable and incomputable problems.

Chapter 4, “An Overview of Practical Classical Computing”, connects abstract
models to hardware, covering transistors, logic gates, and the translation from
high-level code to machine instructions.

Chapter 5, “Information and Complexity Theory”, introduces classical com-
plexity classes (P, NP, and BPP) and the quantum class BQP, motivating quantum
speedups while grounding expectations. A concluding thought experiment links
information theory to thermodynamics.

https://doi.org/10.1007/978-3-032-03325-3_1
https://doi.org/10.1007/978-3-032-03325-3_2
https://doi.org/10.1007/978-3-032-03325-3_3
https://doi.org/10.1007/978-3-032-03325-3_4
https://doi.org/10.1007/978-3-032-03325-3_5

1Linear Algebra and Probability

Linear algebra and probability are foundational requirements for quantum com-
puting and are sufficient for understanding and analyzing basic concepts and
algorithms in quantum computing. This chapter is a brief overview and refresher
of linear algebra and probability for the remainder of the book.

We first introduce column and row vectors in the notation familiar to engineers
and then transition to the Dirac or “bra-ket” notation used in quantum computing,
which is the standard notation used in quantum computing literature.

Subsequently, important matrix classes such as Hermitian, unitary, and orthog-
onal projection matrices are introduced with explanations of how they represent
operations on a quantum state. These concepts are then connected to the expec-
tation values of a quantum state and the properties of valid expectation value
operators.

We then introduce the concept of measurements, which are mathematically
expressed as projection operations in the simplest case and explain how measure-
ments correspond to sampling outcomes from a probability distribution determined
by the probability amplitudes of a quantum state.

We then transition to numerical problems involving matrices. We provide an
overview of important matrix decompositions, including the eigenvalue transfor-
mation to diagonalize a matrix and the singular value decomposition, along with
the commonly encountered eigenvalue problem. The condition number of matrices
is shown to be an important property of matrices, which generally has implications
for the cost and precision of a solution.

The linear system of equations problem is presented with a discussion of two
major classes of algorithms to solve it: direct solvers and iterative solvers.

We end the chapter by introducing the Krylov subspace and Kronecker product
of matrices with some relevant properties.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_1&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_1

4 1 Linear Algebra and Probability

Vectors, Bras, Kets, and Dirac Notation

A vector v ∈ CN is an element of an N -dimensional linear space of complex

vectors, CN , with entries vi ∈ C, and can be written as v =
N−1

i=0
vie i where ei is

the i t h standard basis vector.
In quantum mechanics, vectors are typically expressed using Dirac notation,

also known as bra-ket notation. A “ket,” written as |ψ , represents the state of a
quantum system. In finite-dimensional systems like those in gate-based quantum
computing, a ket is simply a complex column vector in CN .

Quantum states are normalized, meaning that their squared magnitude is 1. Kets
can be written in any orthonormal basis, and the label | ψ denotes a specific state
in that basis. The most common basis in quantum computing is the computational
basis, consisting of states | 0 , | 1 , . . . , |N − 1 , which correspond to the standard
basis vectors in CN , e.g.,

| 0 = 1
0

, |1 = 0
1

∈ C2

This basis is sometimes called the Z-basis, as it is the set of eigenstates of the
Pauli-Z operator.

Qubits are the quantum computational analog of classical bits, i.e., 0 or 1.
Another commonly used label is an integer i ∈ W, which represents a quantum
state corresponding to the i t h standard basis vector

|i = e i

Note that this notation does not conflict with the notation introduced earlier for
computational bits when i = 1 or 0. An arbitrary vector v may be represented in
Dirac notation (after normalization) as

|v = 1 √
v†v

N −1

i=0
vi|i

where the “dagger” symbol † denotes the conjugate transpose operation.
A “bra” ψ | is the adjoint of a ket |ψ and can be represented as the row

vector ψ | = (|ψ)†. For brevity, we often refer to an arbitrary bra or ket as ψ |
and |ψ , respectively, with elements ψi ∈ C where normalization is implied:

|ψ =
i

ψi|i ,
i
|ψi| 2 = 1

Bras and kets must be normalized because they represent “probability ampli-
tudes” and, by extension, a probability distribution (and probabilities of all event
outcomes must sum to 1). This normalization is often referred to as the Born rule.

Vectors, Bras, Kets, and Dirac Notation 5

Probability amplitudes are different from probabilities. Probability amplitudes
are complex numbers ψi ∈ C in the unit ball, i.e., |ψi| ≤ 1, whereas probabilities
are real numbers pi ∈ R s.t. 0 ≤ pi ≤ 1. The probability corresponding to a
probability amplitude may be computed as ψ∗

i ψi. Unlike probabilities, probability
amplitudes allow quantum states to interact constructively or destructively.

Quantum states such as |v and |w belong to a Hilbert space, a complex vector
space equipped with an inner product. The inner product between two kets |v and
|w is written as v | w and computed as

v | w =
N−1

i=0

v∗
i wi

This inner product corresponds to the overlap between the states. Physically, the
squared magnitude v | w 2 gives the probability of obtaining an outcome |v
when measuring a system in a state |w .

Note: this requires definition of measurements, and the basis used for mea-
surement, which is explained in detail in Chap. 10: Quantum Measurements and
Circuits.

We note that if the bra and ket represent quantum objects in a continuous Hilbert
space, they can be represented as functions over a support ω

|v = v(ω)

w| = w∗ (ω)

for which a bra-ket represents an integral:

v | w = v(ω)∗w(ω)d ω

and the bra and ket are normalized, i.e.,

v | v = v(ω)∗v(ω)dω = 1

w | w = w(ω)∗w(ω)dω = 1

To further explain the interpretation of quantum states as probability distributions,
we first need to introduce matrices and matrix operations on quantum states.

Linear operators acting on a Hilbert space may be expressed in terms of an
outer product. Let |v and w| belong to Hilbert spaces V and W , respectively.

6 1 Linear Algebra and Probability

Their outer product, written as |w v|, represents a linear operator from V to W ,
defined as

(|w v|) v = v|v |w ∀ v ∈V

If |v =
i
vi|i in the standard basis, where vi i | v , then

|v =
i

|i i | v =
i

(|i i|)|v =
i

|i i| |v

indicating that the identity matrix I =
i
|i i | as the above relationship holds for

all |v .
Similarly, if |w =

j
wj|j , then |w v| =

i j
viwj|i j| defines the matrix

(linear operator) A with elements Aij = viw j.
As an example, consider a general qubit state

|ψ = α|0 + β|1 = α

β

and a linear operator constructed from outer products of the standard basis states:

A = a|0 0| + b|0 1| + c|1 0| + d |1 1|

= a 1 0
0 0

+ b 0 1
0 0

+ c 0 0
1 0

+ d
0 0
0 1

= a b
c d

Applying A to |ψ yields

A|ψ = a b
c d

α
β

= αa + βb
αc + βd

= (αa + βb)|0 + (αc + βd)|1

Matrices

A matrix A is an operator that can be applied to a vector to perform the map

w = Av

where w, v ∈ CN , A ∈ CN×N .

Matrices 7

When operating on a quantum state |ψ , it is necessary to maintain the normal-
ization of the quantum state according to the Born rule. Unitary matrices ensure
that the Born rule is not violated. By definition, a unitary matrix U satisfies

UU † = I

Unitary matrices U ∈ CN × N belong to the mathematical group U (N), referred
to as a unitary group of degree N . Unitary matrices U ∈ CN × N such that det(U) =
1 (the determinant) belong to the mathematical group SU (N), referred to as the
special unitary group of degree N . Unitary matrices have several special properties:

• Unitary matrices are 2-norm preserving, i.e., U |ψ 2 = 1 ∀ U ∈ U (N), |ψ ∈
C
N .

• Unitary matrices are normal, i.e., UU † = U †U = I .
• The eigenvalues λi(U) of a unitary matrix satisfy |λi(U)| = 1 ∀ i, and therefore

|det(U)| = 1.
• A unitary matrix is diagonalizable as U = VDV † where V and D are also

unitary.
• The product of two unitary matrices is also unitary.
• Any unitary matrix can be written as a (non-unique) exponentiated Hermitian

matrix U = e iH .

Unitary matrices are important since they mathematically represent the manip-
ulation of a quantum state as a matrix–vector multiplication operation (without
performing any sampling from the probability distribution or a measurement of
the physical entity it represents). A particularly important property is that they
are 2-norm preserving. If a ket represents a probability distribution, it must be
normalized, and any manipulation of the ket must ensure ψ 2 = 1, which is
automatically satisfied by unitary matrices.

Hermitian matrices are another important class of matrices for quantum
computing. By definition, a Hermitian matrix H ∈ CN× N satisfies

H = H †

Hermitian matrices also possess some important properties:

• The eigenvalues λi(H) of a Hermitian matrix satisfy λi(H) ∈ R ∀ i
• The exponentiation eiH of a Hermitian matrix is a (unique) unitary matrix
• A Hermitian matrix is unitarily diagonalizable
• The quadratic form of a Hermitian matrix vT Hv ∈ R ∀ v ∈ C

N is real
ψ |H |ψ ∈ R ∀ |ψ ∈ C

N .

Hermitian matrices play several important roles in quantum computing and quan-
tum mechanics. They define “observables” of a quantum object. An observable
may be thought of as a measurable property of a physical object. In the context

8 1 Linear Algebra and Probability

of quantum objects, an example would be whether an electron is observed to have
a “spin up” or “spin down” configuration. Although quantum objects are math-
ematically represented in complex space, in the classical world we interact with
them and measure them as real numbered quantities; therefore, it does not make
sense for a single “observation” or “measurement” of any physical object to be
a complex number; the observation or measurement is always real. This require-
ment is automatically satisfied by the fact that the quadratic form of Hermitian
matrices is real for any |ψ . Mathematically, observables are defined as operators
on bras and kets. The concept of observables and measurements will be revisited
in Chap. 6, A Gentle Introduction to Quantum Mechanics, when introducing the
postulates of quantum mechanics.

Hermitian matrices are therefore suitable for defining observables of a quantum
object. The expectation value of an observable with an operator H corresponding
to a quantum state |ψ is mathematically defined as

H ψ ψ |H |ψ

This can be understood as follows: If a quantum mechanical system is known
to be in some state |ψ , a series of measurements of an observable property
(which corresponds mathematically to the observable operator H) will have a
mean/expectation value H ψ .

Matrices can also be defined as positive-definite or positive-semidefinite. This is
important for mathematically defining the energy of a physical object as a Hamilto-
nian H. A Hamiltonian of a physical system is a mathematical operator that returns
the total energy of the system. As an example, the total energy E (an observable)
of a quantum state |ψ is computed using the Hamiltonian H (operator for the
observable E) a s

E = ψ |H|ψ

Rotation and Reflection Matrices

Unitary matrices in U (N) can represent rotations and reflections, while the sub-
set SU (N) only represents rotations. Rotation and reflection matrices can be
distinguished by their determinants: det(U) = 1 for rotation matrices while
det(U) = − 1 for reflection matrices.

9

Pauli Matrices and Pauli Basis

Like vectors being expressed in terms of a set of basis vectors, matrices may also
be represented in a matrix basis. A particularly important and useful basis for
matrices is the Pauli basis formed by the Pauli matrices:

σx = 0 1
1 0

, σy = 0 −i
i 0

, σz = 1 0
0 −1

Later in Chap. 9, Qubits, Quantum Registers, and Quantum Gates, we redefine
these Pauli matrices as single-qubit gates.

Together with the identity matrix (I), the Pauli matrices form a complete basis
for 2 × 2 matrices. Any such matrix can be written as

A2×2 = α1I + α2σx + α3σy + α 4σz

where αi ∈ C. This result can be extended to any general matrix A ∈ C2n×2 n as

A =
1

2n i1,i2,...,in
αi1,i2,...,in σi1 ⊗ σi1 ⊗ . . . ⊗ σin

where σij ∈ I , σx, σy, σz , αi1,i2,...,in ∈ C, and ⊗ denotes the Kronecker prod-
uct. Furthermore, we note that one may always express an arbitrary matrix as a
Hermitian matrix using the Hermitian dilation of A:

H = 0 A
A† 0

Chapter 13, Access Models and Data Representation, provides an example code
to decompose matrices in the Pauli basis.

Vector and Matrix No rms

Vectors and matrix norms are important metrics used in quantum computing. A
p-norm of a vector for p ∈ Z + is defined as

vp =
i
(vi)

p
1/ p

Similarly, a norm may be defined for a matrix as an induced p-norm:

A p = sup
x 0

Ax p
x p

Of particular interest is the 2-norm, i.e., p = 2. In this book, whenever the norm
is unspecified, it may be assumed to be the 2-norm.

10 1 Linear Algebra and Probability

Condition Number

The condition number of a matrix A is defined as

κ(A) = sup
v,w

A−1v

v

w

A−1w
= A A−1 ≥ 1

The condition number of a matrix frequently arises in the analysis of quantum
algorithms involving matrices, such as linear system solvers or ordinary differential
equation solvers. A large condition number will often manifest itself as difficulties
in solving a problem, either through a loss of digits of precision or the overall cost
of a solver.

We note the following important properties:

• An equivalent definition of κ(A) is the ratio of the singular values σmax/σmin
• For normal matrices (e.g., Hermitian and unitary matrices), κ(A) is equivalently

defined as a ratio of the eigenvalues λmax / λmin
• κ(A) = 1 for unitary matrices.

For diagonalizable matrices A = V V †, ill-conditioning may arise from the ratio
of the eigenvalues and/or the eigenvectors being approximately linearly dependent.

Projectors

An orthogonal projector P ∈ CN × N is a matrix such that

P2 = P

and

P† = P

We refer to orthogonal projectors simply as projectors (as opposed to non-
orthogonal or oblique projectors).

Note: Orthogonal projectors are not orthogonal matrices.
A projection matrix maps a vector v ∈ C N to a subspace CM s.t. M ≤ N and

therefore rank(P) ≤ N , as shown in Fig. 1.1. Projectors are important for defin-
ing measurement operators in quantum computing. The eigenvalues of orthogonal
projectors are λ(P) ∈ {0, 1}.

Eigenvalue Problems 11

Fig. 1.1 An orthogonal
projector P ∈ R3× 3

projecting a vector v ∈ R 3
onto Pv

Eigenvalue Problems

Given a matrix A, an eigenvalue problem in linear algebra can be defined as.
Find v, λ such that

Av = λ v

where v is an eigenvector and λ is an eigenvalue.
In matrix form this can be written as

AV = V

where is a diagonal matrix with the eigenvalues lying on the diagonal, and V is
a matrix whose columns form the eigenvectors of A.

A matrix may have a full set of eigenvectors, i.e., a unique eigenvector for each
eigenvalue, in which case it can be diagonalized uniquely as

A = V V †

If a matrix is Hermitian, it has orthogonal eigenvectors with real eigenvalues. How-
ever, not every normal matrix is Hermitian (e.g., unitary matrices are normal but
can have complex eigenvalues such that |λi| = 1 ∀ i). Furthermore, not every
non-singular matrix is diagonalizable; e.g., if a matrix has repeated eigenvectors,
then it can be diagonalized using the Jordan normal form (e.g., a triangular matrix
of 1’s).

Note that non-singular Hermitian matrices commute, i.e., [A, B] = AB − BA =
0, iff they share the same eigenvectors.

For normal matrices A⊥, one may define the condition number as

κ(A⊥) =
|λ max|
|λmin|

12 1 Linear Algebra and Probability

This formula does not hold for non-normal matrices since the eigenvectors
themselves may be ill-conditioned, i.e., they are not mutually orthogonal and
κ(V) > 1.

It is important to note that, in general, for matrices with N > 4 a general
formula or deterministic procedure to compute eigenvalues does not exist. This is
because eigenvalues are the roots of the characteristic polynomial

f (λ) = det(A − λ I)

where det(·) denotes the determinant and f (·) is a polynomial, and a closed-
form algebraic formula to compute the roots of a polynomial of degree > 4 has
been shown not to exist according to the Abel–Ruffini theorem. Therefore, the
computation of eigenvalues and eigenvectors in general must be iterative.

We now briefly introduce the generalized eigenvalue problem. Given two sym-
metric matrices A and S (sometimes referred to as a linear matrix pencil (A, S)),
a generalized eigenvalue problem can be defined as follows.

Find v, λ such that

Av = λ Sv

where v is a generalized eigenvector and λ is a generalized eigenvalue.
The standard eigenvalue problem is a special case of the generalized eigenvalue

problem with S = I . S is often referred to as an overlap matrix.
Eigenvalue problems are of particular interest in engineering since they can

be used to study the stability of dynamic systems and instabilities (e.g., buck-
ling) in static systems, solve ordinary differential equations, and tackle many other
problems of practical interest.

Singular Value Decomposition

The singular value decomposition (SVD) of a matrix is defined as

A = U V †

where U and V are matrices, whose columns are the left and right singular vectors,
respectively, and is a diagonal matrix with the singular values σ ∈ [0, ∞) ∼ = R

+
lying on the diagonal, ordered from the largest to the smallest. The SVD is unique
up to the signs of the singular vectors.

The SVD is particularly powerful since it applies to every matrix, whether
square or rectangular, singular or non-singular. The norm of any matrix and its
inverse are

A = σmax, A−1 = σmin

Linear Systems of Equations 13

Therefore, the condition number of a matrix is directly available from an SVD
as

κ =
σ max
σmin

The “most important subspace” of a matrix (and its inverse) containing the
“bulk of the information,” in the 2-norm, corresponds to the largest (and the
smallest) singular values. Furthermore, inverting a matrix using its SVD is particu-
larly straightforward, requiring two dense matrix multiplications and one diagonal
matrix multiplication at most.

The singular value decomposition is crucial for advanced quantum algorith-
mic frameworks, such as the quantum singular value transformation and quantum
signal processing.

Linear Systems of Equations

A linear system problem, or a system of linear equations, is defined as.
Given A ∈ CN ×N , b ∈ CN , find x ∈ CN s.t.

Ax = b

The linear system problem has a solution, or is well-posed, iff det(A) = 0 or
equivalently:

All singular values σ > 0.
All eigenvalues λ 0.
A−1 exists.
The linear system problem arises frequently in science and engineering. Robust

and efficient solutions of linear systems are of paramount importance in scientific
computing. There exist two broad classes of algorithms for solving systems: direct
solvers and iterative solvers.

Direct solvers for linear systems have a runtime that is known a priori, but
have the disadvantage of scaling worse than iterative solvers in computational cost.
Furthermore, direct solvers only provide a solution at the end of the computation,
whereas iterative solvers can typically provide a useful partially converged solution
before fully converging.

Classical direct solvers, e.g., LU decomposition, require O N 3 operations in
general to solve a dense linear system with N unknowns. Direct solvers with better
asymptotic scaling have been discovered but are not practically implementable or
useful due to large prefactors.

Iterative solvers scale more favorably. Given an initial guess with error
b − Ax0 = 0 , the conjugate gradient iterative solver scales as O

√
κN log N /˜

for positive-definite A and O
√

κN log N /˜ for indefinite A where ˜ = 0 is
the relative decrease in solution error. More advanced iterative solvers, e.g., multi-
grid methods, require as little as O(N log ˜) floating-point operations (FLOPs).

14 1 Linear Algebra and Probability

Table 1.1 Some common linear stationary iterative methods

Method Iterative formula

Richardson xn+1 =
xn + ω(b − Ax n)

ω is a scalar parameter chosen for convergence

Jacobi xn+1 =
D−1(b − (L + U) xn)

D, L,U are the diagonal, upper triangular, and lower
triangular parts of A

Gauss–Seidel Lxn+1 = b − Ux n

The crux of effective and efficient iterative solvers is exploiting the structure of
the problem underlying the linear system.

Quantum algorithms for linear systems have the potential to achieve an expo-
nential speedup in N . However, they scale linearly with κ at best. Improving the
linear dependence of κ for specific problems of practical interest, e.g., sparse
positive-definite matrices, is an active area of research. Quantum linear system
algorithms are discussed in detail in Chap. 30, Quantum Linear System Algo-
rithms: Direct Methods, and Chap. 31, Quantum Linear System Algorithms:
Iterative Methods.

Linear Iterative Methods: Stationary Point Iterations

A simple and straightforward way of solving linear systems iteratively is using a
linear iteration whose stationary point is x.

These iterations take the general form:

xn+1 = f (xn)

where f (x) is an affine transformation. Richardson, Jacobi, and Gauss–Seidel
methods are well-known and elementary techniques for solving linear systems
iteratively and are summarized in Table 1.1.

Stationary iterative methods converge if and only if the spectral radius of the
iteration matrix (i.e., the largest absolute value of its eigenvalue) is less than 1.
Although the convergence rate of linear stationary iterations can be prohibitively
slow in general, preconditioning can be applied for faster convergence.

Krylov Subspace Methods

Krylov subspace methods are among the most powerful and robust techniques for
solving linear systems. These methods work in the Krylov subspace, i.e.,

Kr(A, b) = span b, Ab, A2b, . . . ,Ar−1b

Kronecker Products 15

built using matrix–vector products. Since a naïve application of matrix–vector
products can lead to subspace vectors being ill-conditioned, an orthonormalization
process, such as the Gram–Schmidt method, is typically performed in classi-
cal algorithms, which requires the computation of inner products, a nonlinear
operation.

The Krylov subspace can be applied to eigenvalue problems as shown in
Chap. 29: Eigenvalue Problems.

Kronecker Products

Kronecker products arise frequently in quantum computing and have some
important properties:

Kronecker products are bilinear and associative:

A ⊗ (B + C) = A ⊗ B + A ⊗ C

Kronecker products are non-commutative:

B ⊗ A A ⊗ B

The matrices in a Kronecker product operate within their subspaces. This is
evident from the mixed-product property:

(A ⊗ B)(C ⊗ D) = AC ⊗ BD

This readily extends to eigendecompositions (if it exists for each matrix in the
Kronecker product):

A ⊗ B = VADAV
†
A ⊗ VBDBV

†
B

A sum of Kronecker products of the form

KAB = A ⊗ In + I m ⊗ B

where A ∈ Cm× m, B ∈ Cn× n can be exponentiated as

exp(KAB) = exp(A) ⊗ exp(B).

2Polynomial Approximations

Polynomial approximations are frequently used in developing and analyzing
quantum algorithms. Advanced quantum algorithms, especially block encoding
techniques and quantum signal processing, rely on polynomial approximations
of analytic matrix functions. We summarize the main approximation tech-
niques, which fall into two categories: (1) pointwise approximations (e.g., Taylor
expansions), and (2) uniform approximations over an interval (e.g., Chebyshev
polynomial expansions).

Approximation Around a Point

Let f : D → C be an analytic function defined on an open set D ⊆ C, and let
a ∈ D. The Taylor series of f about x = a is

f (x) =
∞

i=0

f (i) (a)

i! (x − a)i

where f (i) denotes the i-th derivative of f .
The degree-n Taylor polynomial, denoted as Tn(x), is defined by truncating the

series:

Tn(x) =
n

i=0

f (i) (a)
i! (x − a) i

The approximation error at x ∈ D is given by the remainder term,

Rn(x) = f (x) − Tn(x) =
f (n +1)(c)

(n + 1)! (x − a)n+1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_2&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_2

18 2 Polynomial Approximations

for some c ∈ [a, x]. The error bound is then

|f (x) − Tn(x)| = |Rn(x)| ≤ sup
c∈[a,x]

f (n +1)(c)

(n + 1)! (x − a)n+1

As n → ∞ , the Taylor series converges to f (x) for all x within the radius of
convergence [1].

Approximation Over an Interval

Suppose we wish to approximate f uniformly on a closed interval [a, b]. With-
out loss of generality, we may map [a, b] to [−1, 1] via an affine transformation.
For: [−1, 1] → R, a common approach is to expand f in terms of Chebyshev
polynomials of the first kind, Tn(x)), defined as

Tn(x) = cos(n arccos x), x ∈ [−1, 1], n ≥ 0

These polynomials satisfy the recurrence relations:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) − T n−1

The roots of Chebyshev polynomials of the first kind, also known as Chebyshev
nodes, are the projections of n + 1 equally spaced points on a semicircle of unit
radius onto its diameter, as shown in Fig. 2.1.

We may approximate f (x) over an interval as

f (x) ≈ Pn(x) =
n

i=0
αiT i(x)

To approximate a function f (x) in a Chebyshev basis, we first map the interval
x ∈ [a, b] to x̃ = 2x−(a+b)

b−a ∈ [−1, 1] to obtain f (x̃), and then sample f (x̃) at n + 1
Chebyshev nodes. One may then fit the polynomial Pn(x̃) of degree n to the n + 1
points x̃k , f (x̃k)|x̃k = cos 2k +1

2n π ∀ k ∈ [0, n] ⊂ Z .

The Chebyshev approximation of a function bounds the approximation error f (x)−
Pn(x) in the max norm over an interval, i.e., max

x∈[a,b]
|f (x) − Pn(x)|. For the interval

[a, b], this is

|f (x) − Pn(x)| ≤ 1

2n(n + 1)!
b − a

2

n+1

max
c∈[a,b]

f (n+1) (c)

Analytic Functions of Matrices 19

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 2.1 The placement of Chebyshev nodes is visualized as equidistant points on a semicircle
projected onto its diameter

The Chebyshev approximation is typically considered to yield the minimax (best
uniform) polynomial approximation for continuous functions over x ∈ [a, b],
achieving the smallest possible maximum error in the interval. However, this opti-
mality does not always hold for x /∈ [a, b], the Chebyshev minimax polynomial
may not minimize the approximation error, and, in certain cases, alternative poly-
nomial constructions can yield smaller errors outside the original interval [2].
Nevertheless, Chebyshev polynomials are widely used due to their robustness
for analytic functions, and they can also provide good approximations for some
non-analytic functions. The Remez exchange algorithm is an iterative method for
constructing the minimax polynomial and can be used to compute the coefficients
for the Chebyshev (and other minimax) approximations [3].

Analytic Functions of Matrices

The concept of evaluating analytical functions may be extended to square matrices
using a Taylor series approximation:

f (A) ≈
n

i=0
αi A

i

where αi are the coefficients of the Taylor series approximation of f .
If A is diagonalizable, one may use the diagonalization instead to compute f (A)

exactly as

f (A) =
∞

i=0
αiA

i =
∞

i=0
αi V V −1 i =

∞

i=0
αiV

iV −1

= V
∞

i=0
αi

i V −1 = Vf ()V−1.

20 2 Polynomial Approximations

where is a diagonal matrix containing the eigenvalues λj, and f () is a diagonal
matrix with entries f λj on the diagonal.

Matrix Exponentiation

Exponentiation of a matrix A as eiA is an important task in quantum comput-
ing since it can exactly solve time-independent systems of ordinary differential
equations, e.g., the time-dependent Schrödinger equation of an isolated quantum
mechanical system.

If the diagonalization of A is available, one may simply compute the matrix
exponential as an analytical function of a matrix as discussed previously. However,
the diagonalization of the system is typically not available, and is often intractable
to compute for large N . Therefore, various approximations of matrix exponen-
tials have been developed, of which the most notable are Trotter–Suzuki formulas,
Taylor series approximations, and quantum signal processing techniques.

The problem of approximating a matrix exponential of the form eiH (or the
operation of this matrix exponential on a ket |ψ) where H is a Hamiltonian is
known as a Hamiltonian simulation problem (for isolated systems). We deal with
this topic in detail in Chap. 28: Hamiltonian Simulation Techniques. Here, we
simply provide a mathematical introduction to the problem.

Typically, H is a sparse matrix which can be expressed as a sum of 1-sparse
terms Hi:

H =
i
H i

and each Hi can be exponentiated individually in a straightforward manner.
Exponentiating these 1-sparse terms can be done easily on a quantum computer.

However, the fundamental problem arises in combining these individual terms.
While for x, y ∈ C, ex+y = exe y, this holds for matrix exponentials if and only if
A, B ∈ C N commute, i.e., if

[A, B] = AB − BA = 0

is true, only then eA+B = eAe B. In most problems of practical interest, H cannot
be expressed as a sum of commuting 1-sparse terms.

For the general case of arbitrary A and B, the Baker–Campbell–Hausdorff
(BCH) formula provides the exact result:

eX eY = e Z

where

Z = X + Y + 1

2
[X , Y] +

1

12
[X , [X , Y]] − 1

12
[Y , [X , Y]] + . . .

References 21

The Lie–Trotter (and Suzuki–Trotter) approximation [4] is one of the most well-
known and simplest methods for approximating a matrix exponential on quantum
computers, for which the BCH formula provides error bounds. Details of Trot-
ter–Suzuki formulas are provided in Chap. 21: Trotterization. The Trotter–Suzuki
method belongs to a class of techniques known as “product formulas,” and newer
product formulas have also been discovered with improved error bounds [5–8].

References

1. I. Stewart, D. Tall, Complex Analysis, 1st ed. (Cambridge University Press, 1983). https://doi.
org/10.1017/CBO9781139171632

2. B. Fischer, R. Freund, Chebyshev polynomials are not always optimal. J. Approx. Theory 65(3),
261–272 (1991). https://doi.org/10.1016/0021-9045(91)90091-N

3. E. Remez, Sur le calcul effectif des polynomes d’approximation de tchebichef. CR Acad. Sci.
Paris (1934)

4. M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential operators
and inner derivations with applications to many-body problems. Commun. Math. Phys. 51(2),
183–190 (1976). https://doi.org/10.1007/BF01609348

5. C.-H. Cho, D.W. Berry, M.-H. Hsieh, Doubling the order of approximation via the randomized
product formula. Phys. Rev. A 109(6), 062431 (2024). https://doi.org/10.1103/PhysRevA.109.
062431

6. M.E.S. Morales, P.C.S. Costa, D.K. Burgarth, Y.R. Sanders, D.W. Berry, Greatly improved
higher-order product formulae for quantum simulation (2022). https://doi.org/10.48550/
ARXIV.2210.15817

7. M.E.S. Morales, P.C.S. Costa, G. Pantaleoni, D.K. Burgarth, Y.R. Sanders, D.W. Berry, Selec-
tion and improvement of product formulae for best performance of quantum simulation (2025).
https://doi.org/10.48550/arXiv.2210.15817

8. M. Bagherimehrab et al. Faster algorithmic quantum and classical simulations by corrected
product formulas (2025). https://doi.org/10.48550/arXiv.2409.08265

https://doi.org/10.1017/CBO9781139171632
https://doi.org/10.1017/CBO9781139171632
https://doi.org/10.1016/0021-9045(91)90091-N
https://doi.org/10.1007/BF01609348
https://doi.org/10.1103/PhysRevA.109.062431
https://doi.org/10.1103/PhysRevA.109.062431
https://doi.org/10.48550/ARXIV.2210.15817
https://doi.org/10.48550/ARXIV.2210.15817
https://doi.org/10.48550/arXiv.2210.15817
https://doi.org/10.48550/arXiv.2409.08265

3Theory of Computing

In this chapter, we provide an overview of the theoretical foundations of com-
puting, and, in the next chapter, we will present how these foundations come to
fruition as modern electronic computers.

Automata and Turing Machines

We will begin our discussion with various types of automata, an abstract object
that follows a sequence of instructions. An automaton may be built as a machine or
could be a human following instructions in a “desultory manner.” One may estab-
lish a set of rules to describe various types of automata and study the limits of their
computation. Ideally, we would like a device to be able to follow any sequence
of instructions to compute any function that we can compute algorithmically. We
will briefly study this problem by establishing a few automata and endowing them
with properties until they are powerful enough to compute any function that has
an algorithm to compute it.

Perhaps the simplest form of an automaton is Combinational Logic. This can
often be expressed as a Boolean expression or a Boolean Circuit as shown in
Fig. 3.1.

The behavior of this automaton (the output) depends solely on the current
inputs, regardless of any previous inputs. The limitations of a Combinatorial
Logic automaton are quite obvious. Consider a Combinatorial Logic Automa-
ton that computes the parity of a binary string of length n. To compute the
parity of a binary string s of length 2n bits with such an automaton, one
may “remember” the result of the first and last n bits, and compute the parity
as parity(parity(s[0 : n − 1]), parity(s[n : 2n − 1])). However, this automaton is
incapable of any form of inference beyond its immediate input; it does not have

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_3

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_3&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_3

24 3 Theory of Computing

Fig. 3.1 A Combinational
Logic statement and its
equivalent logic circuit

any memory or a state dependent on a previous computation. Therefore, we cannot
compute the parity of arbitrarily long strings solely with this automaton.

However, it is imperative to note that for limited input and output sizes n and m
respectively, there always exists a corresponding circuit for any arbitrary function
f : {0, 1}n → {0, 1}m. Toward the end of this chapter, we will revisit this fact.

One may form a more complex device by allowing the device to assume a finite
number of states. This class of devices is known as finite state automata. These
devices may assume a finite number of states and transition between them based
on the current state and current input. They do not have a memory of previous
states or how they arrived at their current state.

Let’s describe a finite state automaton to compute the parity of strings. Our
automaton can assume two states. qeven and qodd , corresponding to an even or odd
parity. The automaton is initialized in the state qeven. The automaton accepts a
binary bit x = 0 or x = 1, one at a time, as input. Whenever a binary x = 1 is
input to the automaton, it will change its state from qeven to qodd and vice versa.
Whenever a binary x = 0 is input to the automaton, it will not change its state.
This is summarized in Fig. 3.2, which describes the state diagram and transition
function δ : q, x → q. After initializing the automaton in the state qeven, all the
bits of a string are fed to the automaton one by one, and, at the end, the state of
the automaton indicates the parity of the bitstring.

By simply equipping our device with a finite number of states, we have
expanded its computational capability: a finite state automaton can compute the
parity of an arbitrarily long binary string. But can a finite state automaton check
whether an arbitrary binary string is balanced, i.e., whether the number of ones

Fig. 3.2 A finite state automaton for computing the parity of a string of bits

Automata and Turing Machines 25

matches the number of zeros, or not with this form of automata? This is not pos-
sible, since this requires keeping track of the difference between the number of
ones and zeros encountered in the string, and for an arbitrarily long string, this
can require an infinite number of states to keep track of this difference! We have
encountered a limitation of our automaton once again.

We will now equip our automata with an idealized infinite memory. We are
now arriving at a description of a deterministic Turing Machine [1], which we
will simply refer to as a Turing machine for brevity. There are many subtly
different descriptions of Turing machines, all of which are similar and equally
powerful. Here, we will provide a description similar to [2] for intertextual conve-
nience and recommend the description of automata in [3] for readers interested in
thoroughness.

A Turing machine consists of the following elements, as visualized in Fig. 3.3:

• Tape
• Read–write tape head
• Finite state control
• Program.

The tape in a Turing machine is infinitely long in one direction and is divided
into squares. In the following, we adopt the convention that the tape stretches
infinitely to the right. Each square can store one symbol from a set of possible
symbols known as an alphabet .

Fig. 3.3 Schematic depiction of a Turing machine

26 3 Theory of Computing

At every step, the read–write tape head is positioned over a particular square.
When the Turing machine is initialized, the read–write tape head is positioned over
the leftmost square, and all information needed by the computation is written on
a finite number of the leftmost squares of the tape, and the remainder of the tape
is left blank. In each step, the read–write tape head reads the current square it is
positioned on and

1. writes the current square: →
2. moves the head one square to the left or right, or remains stationary. This is

described by the set of movements S : {−1, +1, 0}.

The finite state control describes an internal state q ∈ Q of the machine (this does
not include the square being read by the tape head), and the states are labeled as
qi ∈ Q where the cardinality |Q| = m where m is sufficiently large and finite.
There are two special states qs and qh, the start state and halt state, respectively.
When the machine is initialized, the finite state control is in the state qs. When
the machine enters a halt state qh (there may be multiple halt states), it ceases
operation.

Note that a Turing machine may loop forever! We will return to this issue later
in the chapter. When a Turing machine does halt, to indicate the reason for the
termination of a program it is important to indicate two subsets of Q: the accept
states qa ∈ Qa ⊂ Q and reject states qr ∈ Qr ⊂ Q s.t. Qa ∩ Qr = ∅. A Turing
machine will halt on these states. Using this terminology, a Turing machine can
decide an input, i.e., accept or reject it.

The program of a Turing machine is a list of program lines. To avoid any confu-
sion, we emphasize that, unlike typical modern computer programs we are familiar
with, the sequence in which the program lines are presented is not necessarily the
sequence of steps the Turing machine will step through. Instead, the program is
better described as a transition function δ : Q → Q ,S and each program
line is a quintuple q, x, q , x , s, where

• q ∈ Q is the current state of the machine
• x ∈ is the current symbol read by the read–write tape head
• q ∈ Q is the next state of the machine
• x ∈ is the symbol to be written in the current square
• s ∈ S is the direction in which to move the read–write head.

Execution of any program line is counted as one computational step (regardless of
the lookup through all the program lines). If the machine encounters a state and
tape square q, x for which it cannot match a program line, it will automatically
enter the halting state qh. If the read–write head is on the leftmost square and is
instructed to move further to the left, it will not move.

The automaton we have described above may seem deceptively simple, but it
captures the essence of all classical computation. Any function whose computation
can be described as an algorithm can be computed by a Turing machine. More

Automata and Turing Machines 27

generally, a Turing machine can execute any algorithm. This is summarized in the
Church–Turing thesis:

A Turing machine can simulate any algorithmic process.
Let’s return to our problem of determining whether a binary string is balanced
or not. In the context of Turing machines, this problem is often referred to as a
balanced parenthesis problem. We will use a Turing machine with the following
description:

Alphabet: : {0, 1, b, c , }
• binary 1
• binary 0
• blank b
• “canceled” square c
• leftmost square marker .

Tape: Leftmost square is initialized as , followed by the string as consecutive
zeros and ones. The remainder of the tape is blank.

Finite state control:
qstart : machine initial state
qscan: scan right for 0 or 1 till blank is encountered
qreturn: return to leftmost square
qc0: scan right till a 1 is found to cancel a 0
qc1: scan right till a 0 is found to cancel a 1
qbal : accept state, string is balanced
qunbal : reject state, string is unbalanced.

Program:

Program Line Description Task

qstart , , qscan, , +1 Start –

qscan, 0, qc0, c,+1 Found 0,
enter cancel
0 stat e

Scan toward right till a 0 or 1 is encountered and enter
corresponding cancel state. If end of string reached,
accept as balanced

qscan, 1, qc1, c,+1 Found 1,
enter cancel
1 stat e

qscan, c, qscan, c,+1 Already
canceled,
continue

qscan, b, qbal , b, 0 All bits
matched,
accept

(continued)

28 3 Theory of Computing

(continued)

Program Line Description Task

qreturn, , qscan, ,+1 Reached
first square,
start
scanning

Return toward left till first square, then enter scan state

qreturn, c, qreturn, c,−1 Continue
toward left

qreturn, 0, qreturn, 0,−1 Continue
toward left

qreturn, 1, qreturn, 1,−1 Continue
toward left

qc0, 1, qreturn, c, 0 Cancel 0
with 1

Move right till a 1 is encountered to cancel a 0. If end
of string is reached and 1 is not found, reject as
unbalanced

qc0, c, qc0, c,+1 Already
canceled,
continue

qc0, 0, qc0, 0,+1 0, continue

qc0, b, qunbal , b, 0 Could not
cancel 0
with 1,
reject

qc1, 0, qreturn, c, 0 Cancel 1
with 0

Vice versa for above

qc1, c, qc1, c,+1 Already
canceled,
continue

qc1, 1, qc1, 1,+1 1, continue

qc1, b, qunbal , b, 0 Could not
cancel 1
with 0,
reject

We now see that our automata can determine whether strings are balanced or
not. However, is there a limit to what Turing machines can compute? As long as
there is an algorithm with a finite number of steps, a Turing machine is capable of
computing it.

Several uncomputable problems have been discovered. The first and most
famous counterexample of a problem which a Turing machine (or any known
automaton) cannot solve is the halting problem, since an algorithm to solve it does
not and cannot exist. In fact, Alan Turing devised the concept of Turing machines
to answer a specific problem posed by David Hilbert, the Entscheidungsproblem
or “decision” problem. Loosely defined, the decision problem questions:

Does there exist a general algorithm that van take as input a (logical,
mathematical, etc.) statement and “decide” whether it is valid or not?

Variants of Turing Machines 29

Fig. 3.4 A proof of the halting problem [4]

Alan Turing, in his paper “On Computable Numbers, with an Application to
the Entscheidungsproblem” [1], showed that a Turing machine can execute any
arbitrary algorithm, but is incapable of solving the halting problem, answering
the Entscheidungsproblem in the negative. The halting problem can be stated
informally as

Given a description of a Turing machine A, can Another turing machine B take
as input the description of A and decide if it halts (does not loop forever)?

There are various proofs in the negative: such a general algorithm cannot exist
for an arbitrary input and input size. We provide here an exceedingly succinct
proof in its original form [4] in Fig. 3.4.

Turing machines (and its equivalents and variants) are the most powerful known
computational devices and can execute any algorithm given enough time.

Variants of Turing Machines

For completeness, we will now briefly go over some variants of Turing machines,
many of which are equivalent to the machine described above.

Although Turing machines in their simplicity are quite powerful, writing pro-
grams for them can be quite laborious. To alleviate this arduousness, one may
equip the Turing machines with multiple tapes. It is straightforward to show that a
multi-tape Turing machine is at least as powerful as a single tape Turing machine
(simply use only one tape). Furthermore, it can also be shown that a single tape
Turing machine can efficiently (polynomially equivalent) “simulate” a multi-tape
Turing machine as follows.

Theorem ([5]) Given any k-string Turing machine M operating within time f (n),
we can construct a Turing machine M operating within time O f (n)2 and such that,
for any input x, M (x) = M (x).

30 3 Theory of Computing

Table 3.1 A summary of various automata

Combinatorial logic Finite state
automata

Deterministic Turing
machine

Computation depends
on

Inputs Inputs and
current state

Inputs, current state, and
current tape-square state

Cannot compute Parity of arbitrary
binary strings with
unlimited input size

Balance of an
arbitrarily long
bitstring

Anything for which an
algorithm does not exist
(e.g., halting problem)

Furthermore, to reconcile the differences between various flavors of Turing
machines with varying alphabets, numbers and types of tapes, internal states, and
programs, a Universal Turing Machine can be formulated. A Universal Turing
Machine has the description of the Turing Machine it is simulating written on its
tape, including its program, which is evocative of the operation of modern classi-
cal computers which have their programs (or even a virtual machine) written out
in memory (although modern classical computers are better described by RAM
machines, which we do not discuss in this book).

We now summarize the various automata we have encountered and their salient
features in Table 3.1.

The Turing machines we have described and discussed above are determinis-
tic in nature, whose program lines implement a transition function of the form
δ : (q, x) → (q, x, s). One may also study non-deterministic Turing machines,
whose program is written as a set of outcomes δ : (q, x) → {(q, x, s)}. Note that
a probability is not assigned to these outcomes; rather, the Turing machine can
“explore” all branches of a computational tree at once. We emphasize that such a
machine is not known to be constructible, rather it is a theoretical tool to study the
complexity of computation. Non-deterministic Turing machines are not more pow-
erful than deterministic Turing machines. One may always describe a deterministic
Turing machine that exhaustively explores all computational branches. The differ-
ence lies in efficiency, i.e., the resources and time needed to solve a problem. These
concepts will be explored in Chap. 5: Information and Complexity Theory. Quan-
tum computers are not equivalent to non-deterministic Turing machines. There is
no known physical instantiation of a non-deterministic Turing machine, and it is
widely accepted to be impossible to create one.

We note that if probabilities are assigned to the set of outcomes of a non-
deterministic Turing machine, and the resulting machine occupies a unique
configuration at each step (rather than exploring every branch at once), it is a
probabilistic Turing machine. Probabilistic Turing machines can be more efficient
than deterministic Turing machines, but are less efficient than non-deterministic
Turing machines. To set the stage for the later chapters, we will now briefly go
over the idea of mapping the operation of a Turing machine to Boolean circuits.

Universal Circuit Families 31

Universal Circuit Families

While the theoretical construct of Turing machines is powerful and allows the
study of problems in terms of their decidability and complexity, building Tur-
ing machines with infinite memory is impossible, and building Turing machines
with finite memory is impractical, in contrast to Boolean circuits. However, at the
beginning of this chapter, we concluded that

(i) Boolean circuits can compute any function f : {0, 1}m → {0, 1}n
(ii) For the parity problem of size m̃, we cannot use a single Boolean circuit that

computes parity : {0, 1}m → {0, 1}1 where m̃ > m.

Naively seeking an equivalence between Turing machines and Boolean circuits
quickly leads to contradictions. For example, since Boolean circuits can compute
any f : {0, 1}m → {0, 1}n, a Boolean circuit does exist for each m which solves
the halting problem for an input size m. But we know that the halting problem is
undecidable.

The other difference is that the same Turing machine (with its program lines,
etc.) can be used to compute problems of arbitrary input size, e.g., the length
of a string whose parity is to be determined. However, Boolean circuits do not
satisfy this property for many problems. For this reason, Turing machines are a
uniform model of computation, and Boolean circuits are a non-uniform model of
computation.

We will now reconcile the differences between Turing machines and Boolean
circuits by considering a subset of all possible circuits: the uniform circuit family
denoted by {Cm}. The uniform circuit family consists of circuits such that, given an
input size m for a problem, a Turing machine can output a description of an equiv-
alent Boolean circuit that computes f : {0, 1}m → {0, 1}n. Turing machines and
uniform circuit families compute the same class of functions, i.e., there must exist
an algorithm to compute f . Note that since an algorithm for the halting problem
is known not to exist, uniform circuit families exclude such circuits.

With this restriction on {Cm}, we can safely say that while Boolean circuits may
exist for various m which may decide the halting problem, we do not (cannot) have
an algorithm to prepare them and therefore these circuits do not lie in {Cm}.

As we will see in the next chapter, uniform circuit families are not exactly
how modern classical computers are built and programmed. However, the quantum
circuit computational model, introduced in Chap. 10: Quantum Measurements and
Circuits, is by far the most convenient and popular method to program quantum
computers.

Finally, we note that modern classical computers, given infinite/sufficient mem-
ory and byte length, are computationally as powerful as Turing machines (they can
readily simulate a Turing machine). However, classical computers also possess the
capability to randomly access any data in memory, unlike Turing machines, which
move one square at a time. Therefore, modern classical computers are closer to

32 3 Theory of Computing

RAM machines from an architectural perspective, which are polynomially equiv-
alent to Turing machines. Even so, compute operations are executed in a CPU by
combinational circuits (or a sequence of combinational circuits).

In this chapter, we have explored the theoretical foundations of computing by
examining various automata, their computational power, and the limits of com-
putability in the context of algorithms. In the next chapter, we will go over
how classical computers are implemented as the practical counterpart to these
theoretical foundations.

References

1. A.M. Turing, On Computable Numbers, with an Application to the Entscheidungsproblem. Pro-
ceedings of the London Mathematical Society, vol. s2–42, no. 1, pp. 230–265 (1937). https://doi.
org/10.1112/plms/s2-42.1.230

2. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniver-
sary Edition, 1st ed. (Cambridge University Press, 2012). https://doi.org/10.1017/CBO978051
1976667

3. R. Manenti, M. Motta, Quantum Information Science (Oxford University Press, Incorporated,
Oxford, 2023)

4. Strachey, An impossible program. Comput. J. 7(4), 313–313 (1965). https://doi.org/10.1093/
comjnl/7.4.313

5 C.H. Papadimitriou, Computational complexity (Addison-Wesley, Reading (Mass), 1994)

https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1093/comjnl/7.4.313
https://doi.org/10.1093/comjnl/7.4.313

4An Overview of Practical Classical
Computing

We will now turn our attention to the practical implementations of computers. An
elementary component of classical computing is logic gates connected by wires.
Some logic gates that may be familiar to the reader are NOT, AND, and OR
(Fig. 4.1, Tables 4.1 and 4.2). For completeness, we will also need to include the
FANOUT and CROSSOVER operations, which split a single wire into multiple
wires and allow wires to cross over each other, respectively, without affecting the
information they carry [1]. What is particularly important about these gates is that,
together with the FANOUT and CROSSOVER operations, they form a classical
universal gate set (not the same as a universal circuit family). A classical universal
gate set can represent any arbitrary Boolean operation on bits. We investigated
combinatorial Boolean circuits as Combinatorial Logic automata in the previous
chapter.

Another universal gate set consists solely of the NAND gate [2]. Therefore,
any classical Boolean operation can be represented using NAND gates. Besides
being optimally small (only 1 gate to form a universal gate set), it requires
fewer transistors to implement and is therefore often preferred for manufacturing
Very Large-Scale Integration (VLSI) circuits. This chapter is not geared toward
designing our own state-of-the-art computer, so we shall not restrict the following
discussion to the NAND gate.

Transistors as Physical Logic Gates

Transistors, vacuum tubes, and even fluid valves can be used to construct physical
logic gates. As an example, Fig. 4.2 shows a layout of an AND gate constructed
using two NPN (NPN indicates the doping type of the silicon) bipolar junction
transistors and three electrical resistors.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_4

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_4&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_4

34 4 An Overview of Practical Classical Computing

Fig. 4.1 Common Boolean
logic gates and their symbols

Table 4.1 Logical truth
table for AND and OR
Boolean gates

OUT

A B AND OR

1 1 1 1

0 1 0 1

1 0 0 1

0 0 0 0

Table 4.2 Logical truth
table for a Boolean NOT gate

OUT

A NOT

0 1

1 0

The voltage levels of the pins A, B, and OUT determine their logical state. The
voltage levels assigned to Logical 1 and Logical 0 depend on the type of transistor
technology underlying the gate. Some examples are given in Table 4.3. However,
we can abstract away these details by simply considering logical states of 0 and 1.

Transistors as Physical Logic Gates 35

Fig. 4.2 Left: AND gate. Center: AND gate implemented using bipolar junction transistors of
NPN type. Right: Schematic of a bipolar junction transistor of NPN type with labeled doped
regions

Table 4.3 Logical voltage
ranges for various types of
transistors

Transistor type

Logical state TTL CMOS

1 2.7–5.0 Volts 2.4–3.3 Volts

0 0.0–0.4 Volts 0.0–0.5 Volts

By combining several gates, one may implement circuits for Boolean operations
of practical interest involving multiple bits. As an example, a circuit to add two
bits is given in Fig. 4.3, followed by a circuit to add two unsigned integers in
Fig. 4.4.

Fig. 4.3 Left: Digital circuit of a full adder. Right: Schematic of a full adder. Both diagrams show
the input bits A, B with an optional “Carry in” bit for addition, and the output bit S with a “Carry
out” bit

36 4 An Overview of Practical Classical Computing

Fig. 4.4 Left: A circuit for adding two 4-bit unsigned integers with an overflow flag. Right: n-bit
adder module with an overflow flag

Combinational Circuits

In the remainder of this chapter, we will keep considering this problem of adding
integers and will ignore the issue of integer overflow for simplicity.

One thing to note is that these circuits are acyclic and at a steady state, i.e.,
the output of any gate does not impact its input, and the electrical signal has
propagated through all the transistors and stabilized. This property is important
for the computation of Boolean functions using logic gates.

This idea of forming acyclic circuits can be extended to form logical circuits
for any arbitrary Boolean function, e.g., multiplication of two integers. However,
continuing with this approach would require forming longer circuits for longer
programs, and rewiring them for every program one would like to execute. The
deeper the circuits are, the longer it takes for the signal to propagate through the
entire sequence of gates, and the output is only valid when the circuit has reached
a stable state; transient states are not valid in this framework! Furthermore, this
approach does not allow reuse of circuits, e.g., if one would like to add N integers,
it will require O(N) adder circuits, as illustrated for the two approaches shown in
Figs. 4.5 and 4.6.

Sequential Circuits 37

Fig. 4.5 Adding N integers using a serial addition approach with an overall circuit depth of O(N)

Fig. 4.6 Adding N integers using a parallel reduction approach with an overall circuit depth of
O(log N)

Sequential Circuits

The acyclic steady-state combinational circuit approach is not scalable and cer-
tainly not used in modern computers, which regularly crunch information on
scales of Gigabytes to Exabytes. We will now bend the rules of acyclic steady-
state circuits for practical purposes. A more modular approach (which will allow
reuse of circuits) can be pursued using some additional elements: logical memory
and a clock signal. Using these, we will now lay the groundwork for sequential
Boolean circuits. Modern computers are manifested as a mix of sequential and
combinatorial Boolean circuits.

The schematics for the components in what follows (e.g., memory cells)
are presented in a way to enhance clarity and understanding. Modern hardware
implements these components in a more robust and efficient manner.

38 4 An Overview of Practical Classical Computing

Before starting, we note that if logic gates are needed for purposes of effi-
ciency or performance, e.g., repeatedly performing the same Boolean operations
for a stream of different inputs, one may implement a logic gate circuit of interest
directly using either a Field-Programmable Gate Array (FPGA) or manufacture
their own Application-Specific Integrated Circuit (ASIC).

A clock signal is used to synchronize operations. A typical clock signal in
modern processors typically has an oscillation period of ≈ 4 GHz and has an
idealized waveform of the form shown in Fig. 4.7.

Operations are typically “triggered” by the rising or falling edge of the clock
signal. This is achieved using an “edge detector” circuit, which exploits the prop-
agation delay of electric signals through logic gates as shown in Fig. 4.8. These
elements no longer obey the steady-state assumption for Boolean circuits.

Fig. 4.7 Clock signal and associated terminology

Fig. 4.8 Top: A simple edge detector circuit exploiting the delay in signal propagation through
logical gates. Bottom: Input clock signal, complement of the delayed input clock signal, and the
output signal spiking at the rising edge of the clock

Memory Elements 39

Memory Elements

Memory elements can be constructed with the same ingredients: logic gates. A
rudimentary implementation of a memory element is a “latch.”

Let’s investigate a simple memory element for a single bit: a Data (D) Latch, as
shown in Fig. 4.9 with its logic Table 9.1. One property immediately recognizable
is that this logic circuit is cyclic, i.e., the output of a logic gate influences its
input. The inputs to the latch are Data and Enable, and the output is Q and its
complement Q’. When Enable (E) pin is set to logical 0, the latch does not change
its output regardless of the Data pin. However, when Enable is set to 1, the output
“latches” onto the Data input state and retains it when Enable is reset to 0, i.e., it
has memory of its state when Enable was set to 1 (Table 4.4).

We would like to be able to both read and write this single bit of memory when
we address it. This can be achieved by adding a few more gates and a tri-state
buffer to the mix. A tri-state buffer is not a logical gate, acting as an “electronic
switch” instead, as illustrated in Fig. 4.10. It effectively disconnects (connects) the
input and output pins when the enable pin is set to 0 (1) through a very high (low)
resistance and can be implemented using bipolar junction transistors and resistors.

We can now form a memory cell as shown in Fig. 4.11. When Address is set
to 1, the bit can be either written (Write/Read’ = 1) or read (Write/Read’ = 0)
using the same Data pin. Otherwise, the memory cell simply stores the bit and is
disconnected from the Data pin.

By putting together, say 8, such memory cells, one may form a single 8-bit (or
1 byte) memory register which can be read and written one byte at a time through
a data bus, as shown in Fig. 4.12.

Fig. 4.9 A circuit implementing a D-Latch

Table 4.4 Logic table for a
D-Latch

E D Q Q’

0 * Latch Latch’

1 0 0 1

1 1 1 0

40 4 An Overview of Practical Classical Computing

Fig. 4.10 Top: Schematic of a tri-state buffer. Bottom: Operation modes of a tri-state buffer

Furthermore, one may put together a grid of m × m memory registers to form
random-access memory (RAM, more specifically, Static RAM) capable of storing
8 × m 2 bits of data using m2 memory addresses. Figure 4.13 shows how such a
rudimentary RAM can be formed using encoders and decoders.

A decoder simply “decodes” an n-bit binary string into a 2n bit “one-hot”
encoding (e.g., a binary number bn−1 . . . b1b0 is equivalent to the integer i =
n−1

j=0
b j, and the corresponding one-hot encoding will be a binary string of length

2n full of zeros except the i + 1 th position, i.e., b0 ×101 = 5 → 00100000). An
example for two encoded bits being decoded is shown in Table 4.5.

This object can be abstracted into a RAM object with an address bus, a memory
bus, and a pin for Write/Read’, all synchronized by a clock. This RAM can be read
one byte (8 bits) at a time by addressing a particular register.

We can organize memory into chunks to store program instructions, data, a
stack, a heap, and any other information or intermediate storage needed by the
program, with all memory being accessible through a memory bus consisting of
an address, data, and control bus as illustrated in Fig. 4.14.

This approach of using a single memory to store both the program and data
is known as Von Neumann architecture (in contrast with the Harvard architecture,
which stores the program in a separate memory).

Memory Elements 41

Fi
g
. 4
.1
1

L
ef
t:
C
ir
cu
it
to
 f
or
m
 a
 m

em
or
y
ce
ll
fr
om

 a
 D
-L
at
ch
 w
hi
ch
 c
an
 b
e
re
ad
 a
nd

 w
ri
tte

n
w
he
n
ad
dr
es
se
d.
 R
ig
ht
: A

 m
em

or
y
ce
ll

42 4 An Overview of Practical Classical Computing

Fig. 4.12 A classical memory register with a data bus

CPU Architecture

We now turn our attention to a CPU. In its simplest form, a CPU is connected
to memory and receives a clock signal. A basic CPU has a very limited number
of internal registers to keep track of the CPU state and will frequently need to
offload information to memory as it steps through a program. The program (or
sequence of instructions) itself will be stored in memory. The CPU will “fetch”
these instructions one at a time to “decode” and “execute” them (Figs. 4.15 and
4.16).

A CPU operates in a Fetch–Decode–Execute cycle:

• Fetch: Get the next instruction from memory (using the memory address of the
next instruction in the program counter register).

• Decode: Write instruction to Current Instruction register to activate the appro-
priate circuits for the instruction (e.g., an adder circuit with inputs connected
to read two general-purpose registers and output connected to write to another
register)

• Execute: Execute instruction (can include read/write operations from/to mem-
ory).

Some important components of a CPU are as follows:
Registers:

CPU Architecture 43

Fi
g
. 4
.1
3

A
 4
×4

 (
16
)
by
te
 R
A
M
 w
ith

 a
n
ad
dr
es
s,
 d
at
a,
 a
nd
 c
on
tr
ol
 b
us

44 4 An Overview of Practical Classical Computing

Table 4.5 Equivalent
encoded and decoded
bitstrings

Encoded Decoded

00 0001

01 0010

10 0100

11 1000

Fig. 4.14 RAM connected
to a Memory Bus

• Current Instruction register: The instruction the CPU is handling in the current
Fetch–Decode–Execute cycle.

• Program Counter register: Memory address of the next instruction.
• General-Purpose registers: Typically used to hold information needed for the

current instruction, or results of the previous instruction. There are often only
8 of these, and information is immediately offloaded to either the stack or heap
to make them available for the next instructions.

• Stack Pointer register: Memory address of the top of the stack.
• Flag register: Keep track of any flags, like integer overflow.

Units:

CPU Architecture 45

Fig. 4.15 Layout of a simple modern computer

Fig. 4.16
Fetch–Decode–Execute cycle

46 4 An Overview of Practical Classical Computing

• Control Unit: Responsible for coordinating the Fetch–Decode–Execute cycle.
Fetches instructions from memory, decodes them by activating the appropriate
circuits, and executes the instructions (using however many clock cycles are
needed for each step).

• Arithmetic Logic Unit (ALU): Circuits for binary operations (AND, OR, Bit-
shift, etc.), basic arithmetic (ADD, Subtract, Multiply, Divide), etc. The ALU
is coordinated by the Control Unit.

• Floating-Point Unit (FPU): Circuits for floating-point operations. It typically
requires several clock cycles to complete. The FPU is also coordinated by the
Control Unit.

A CPU typically has a very limited number of registers (typically 8 general-
purpose registers for arithmetic, and the rest reserved for the program counter,
link register, error flags, stack pointers, etc.). CPUs rely heavily on RAM to hold
any data beyond the immediate operations being performed in the CPU. One may
draw fuzzy parallels between the state of CPU registers with Turing machine finite
state control, RAM as the tape, and the program counter as the position of the
read–write head.

The rising or falling edges of a clock trigger changes in the register states of a
CPU. In practice, one instruction may take several clock cycles to execute (RISC
instructions require fewer cycles but have longer code; CISC instructions require
more cycles to execute but have shorter code), and the fetch–decode–execute cycle
is pipelined (i.e., they may be occurring simultaneously on every clock cycle!). All
these operations are coordinated by the control unit in the CPU.

For brevity, we will have to gloss over additional details of how these individual
units are implemented and connected, as it is complex and lengthy. By now, we
hope that the reader is convinced that all these pieces can be implemented using
logic gates, latches, and edge detectors, and the control unit coordinates these
operations with the ticking of a clock signal.

Computer Programming

With a functioning CPU that can execute a sequence of operations (stored in RAM)
that may require access to some data (also stored in RAM), one may simply write
a sequence of instructions for the CPU to read information from memory, pro-
cess it, and store the results in memory. We are now in the territory of computer
programming.

With these basic ingredients, we can turn back to the problem of adding a vector
of N integers using only one addition circuit. We use the following pseudocode to
instruct a CPU to add numbers.

Setup:

CPU Register R3: Memory Address: First integer in vector

CPU Register R4: Memory Address: N (# of elements in vector)

Computer Programming 47

Program Counter: Memory Address: Instruction 1 of Addition Program

Addition Program:

Instruction # Instruction

Instruction 1 Load N into CPU Register R0 (using Memory Address in

R4)

Instruction 2 Write integer 0 into CPU Register R2

Instruction 3 Load number in memory address given by R3 into R1

Instruction 4 Add R2+R1, put result in R2

Instruction 5 Decrement R0 = R0-1
Instruction 6 Increment R3 = R3+1
Instruction 7 Compare R0 with 0

Instruction 8 If greater than, write address of Instruction 3

in Program Counter Register

Using such a program, we can add N unsigned integers with a single addition
circuit and a few lines of instructions that loop over the integers, as opposed to at
least N − 1 addition circuits for a Boolean logic circuit. Note that using this same
strategy, we can perform arbitrary Boolean operations by providing a sequence of
instructions instead of explicitly constructing equivalent circuits.

Of course, in today’s world, we typically instruct computers using programming
languages that are easier to read by humans. These languages are “compiled”
into machine code using compilers like gcc or “interpreted” using interpreters like
Python or MATLAB.

To demonstrate the increasing level of abstraction between various program-
ming language levels, we provide below three minimal examples of code imple-
menting an even simpler task: adding two unsigned integers stored in memory and
storing the result in memory:

• In a high-level language like Python, one may do this by writing a one-line
function:

Add two integers in Python

def ADDNUMS(num1, num2):

return num1 + num2
… # Create two integers num1 and num2

sum = ADDNUMS(num1, num2)
…

• For a low-level language, some additional steps like declaring variables and
data types are needed:

48 4 An Overview of Practical Classical Computing

// Add two integers in C

#include <stdio.h>

unsigned int ADDNUMS(int num1, int num2) {

return num1 + num2;
}

unsigned int main() {

unsigned int num1, num2, sum;

… // Populate num1 and num2

sum = ADDNUMS(num1, num2);

…

return 0;

}

• In assembly language, one must explicitly coordinate the flow of information
in the CPU registers and memory and the program counter:

;Add two numbers in ARM Thumb2 Assembly language

;**

;Main Program

;**

;LABEL DIRECTIVE VALUE COMMENT

AREA main, READONLY, CODE

THUMB

EXTERN ADDNUMS

EXPORT __main

__main … … ;Start of Main program

… … …

… … ;Put memory addresses in CPU registers R0: sum (not

yet computed), R1: num1, R2: num2

BL ADDNUMS ;Go to instruct. number with label ADDNUMS, store

addr. of next __main instruct. in Link Register LR

… … ;Resume Main (LR points to this instruct.). Addresses

of numbers are in R0,R1,R2.

… … …

… … …

;***

; End of Main Program

;***

ALIGN

END

;ADDNUMS code: When this code is launched, the main program is

expected to have prepared:

; 1) the memory address of num1 and num2 in CPU registers R1 and R2

Computer Programming 49

; 2) the memory address of where to store sum in register R0

; 3) the memory address of the next instruction to execute after

ending program in LR (Link Register)

;This program will

; 1) Push the program state to the stack (R1, R2)

; 2) Load the two numbers into R1 and R2 using their addresses (over-

write addresses of num1, num2 with num1, num2)

; 3) Add the two numbers and store sum in register R1

; 4) Store sum (sum is in R1) in the memory address of sum (address is

in R0)

; 5) Pop R1 and R2 from stack into R1 and R2 to restore registers to

original state

; 6) Link program back to next instruction in __main

;***

; ADDNUMS program

;***

;LABEL DIRECTIVE VALUE COMMENT

AREA main, READONLY, CODE

THUMB

EXPORT ADDNUMS

ADDNUMS PUSH R2 ;Push data in registers R0,R1,R2 to the

computational stack in memory

PUSH R1

LDR R1,[R1] ;Load 32-bit integer in memory address

given by R1 into R1

LDR R2,[R2] ;Load 32-bit integer in memory address

given by R2 into R2

EXAMPLE ADD R1,R1,R2 ;Add and store in R1: R1 = R1 + R2
STR R1,[R0] ;In memory address given by R0, store

32-bit integer stored in R1

POP R1 ;Restore remaining registers to original

state

POP R2

BX LR ;End of ADDNUMS, resume __main using link

register

;***

; End of ADDNUMS program

;***

ALIGN

END

A compiler will convert human-readable code into machine code, i.e., replace CPU
instructions with the corresponding binary number for that instruction and link
every LABEL in assembly code with the corresponding memory address where that

50 4 An Overview of Practical Classical Computing

Fig. 4.17 ADD instruction opcode encoding, ARM Thumb-2 Supplement Reference Manual

instruction is stored. As an example, according to the ARM Architecture Reference
Manual Thumb-2 Supplement, the instruction.

ADD R1,R1,R2

labeled as EXAMPLE in the assembly example above will be converted to a 16-bit
machine opcode:

0001100010001001

by a compiler according to the datasheet excerpt shown in Fig. 4.17. This string of
zeros and ones will activate the appropriate registers and ALU circuits in the CPU
and activate the electrical connect between the registers and the ALU. The avail-
able set of instructions, registers, and their corresponding opcodes are provided by
the manufacturer of any processor in developer manuals.

One rarely writes code in assembly or machine opcodes due to its tremendous
difficulty, relying on compilers to deal with at least low-level code, and, more often
these days, high-level code. However, knowledge of the inner workings of digital
computers allows one to better appreciate their power, limitations, and potential.

Progress in Classical Computing

This discussion barely scratches the surface of modern-day CPUs, which require
several other layers of abstraction, e.g., CPU cache. The aim of this discussion
is to provide the reader with an abstract understanding of how classical com-
puting is done electronically using the binary number system from the program
level down to electronic circuits executing instructions at the transistor level.
Modern-day computing is highly complex, utilizing several advanced features like
multiple levels of cache, operating systems, dynamic memory allocation, multi-
threading, pipelining, multiple cores, speculative execution, RAM, disk storage,

Progress in Classical Computing 51

GPU accelerators, FPGAs, network connections, and many other capabilities.
However, at its heart lie basic components like logic gates, clock signals, and
memory cells. Although modern electronic computational devices differ from true
Turing machines, one may prove that a digital electronic computer with (hypo-
thetical) infinite memory is equivalent to a Turing machine. It is fortunate that for
many problems of practical interest finite memory is sufficient.

For readers interested in learning more about practical modern computing, one
may start with studying digital design [2] and then proceeding to read about
computer architectures [3].

We end our discussion with how progress in computing has scaled over the
past decades, and how it is expected to proceed in the future: Moore’s law, and
the GPU version of Moore’s law.

Over the years the transistor count in CPUs has roughly doubled every two
years, and this principle is referred to as Moore’s Law [4] as illustrated in Fig. 4.18.
This doubling of transistors has roughly translated to a doubling of the compu-
tational capabilities of processors. This is attributed to steady advancements in
transistor and manufacturing technologies, enabling smaller “feature sizes” of inte-
grated circuits. However, this approach of miniaturization is approaching its limits;
feature sizes smaller than 1 nm are prone to quantum effects, making the devices
lose their deterministic behavior (at the time of writing this book, 2nm features
enabled by extreme ultraviolet lithography are state-of-the-art [5]).

Fig. 4.18 Gordon Moore’s prediction in his original publication [4]

52 4 An Overview of Practical Classical Computing

Beyond the issues of feature sizes, the operable clock frequencies of CPUs
have stopped increasing due to heat dissipation issues, which can lead to a com-
pute bound situation. Moreover, programs are often memory bound, i.e., the limited
bandwidth between the CPU and memory inhibits speedups since the CPU idles
while data is being read from (much slower) memory. In the realms of distributed
memory, heterogeneous computing, and parallel processing data may need to be
moved between memories or messages/signals may need to be sent between com-
puting units. It is not rare for such computing systems to become communication
bound.

Several of these concerns have been alleviated by parallel computing enabled
by modern GPUs. Parallel programming enables speedups by performing many
operations in parallel, enabling speedups for many practical problems. Revisiting
our problem of adding N integers, a CPU will require O(N) CPU clock cycles,
while a GPU with N − 1 processors can perform the same task in O(log N) GPU
cycles using parallel reduction in software. The explosive growth of GPU com-
puting has posited Huang’s law [6]: the number of transistors in GPU devices
more than doubles every year. A single modern GPU may have thousands of com-
putational cores; multiple GPUs can process information on a single computer;
multiple computers can be connected to form clusters or supercomputers.

However, many computational tasks in scientific computing cannot benefit from
parallelization. A very basic example, Newton iterations to compute the roots of a
function f : R → R:

xn+1 = xn +
f (x n)

f (xn)

require sequential computation of the iterates and will be limited by clock speeds.
Even for problems that are not completely sequential, parallelization is far

from a panacea. Problems which are embarrassingly parallel, i.e., require no com-
munication between processes, are well-suited for parallelization over multiple
processors. For all other problems, the speedup possible from parallelization will
be limited by the communication overhead between processors, which may be on
the same CPU or GPU, or may span multiple CPUs, GPUs, computer nodes, or
even be distributed across the Internet.

Beyond the ability to compute fast, one may also be restricted by the amount
of available memory and energy consumption. Simulating quantum mechanics is
exponentially expensive in general and is simply intractable on classical comput-
ers. The quantum equivalent of Moore’s law has not been established yet, albeit
some suggestions have been floated, e.g., quantum volume [7–9].

References

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniver-
sary Edition, 1st ed. (Cambridge University Press, 2012). https://doi.org/10.1017/CBO978051
1976667

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

References 53

2. M.M. Mano, Digital design, 2nd edn. (Prentice-Hall International, London, 1991)
3. J.L. Hennessy, D.A. Patterson, Computer architecture: a quantitative approach, Fifth ed.

(Amsterdam Heidelberg, Elsevier, Morgan Kaufmann, 2012)
4. G.E. Moore, Cramming more components onto integrated circuits, Reprinted from Electronics,

volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Soc. Newsl. 11(3),
33–35 (2006). https://doi.org/10.1109/N-SSC.2006.4785860

5. D. Kazazis, J.G. Santaclara, J. Van Schoot, I. Mochi, Y. Ekinci, Extreme ultraviolet lithography.
Nat Rev Methods Prim. 4(1), 84 (2024). https://doi.org/10.1038/s43586-024-00361-z

6. T.S. Perry, Move over, Moore’s law. Make way for Huang’s law [Spectral Lines]. IEEE Spectr.
55(5), 7–7 (2018). https://doi.org/10.1109/MSPEC.2018.8352557

7. C.H. Baldwin, K. Mayer, N.C. Brown, C. Ryan-Anderson, D. Hayes, Re-examining the quan-
tum volume test: Ideal distributions, compiler optimizations, confidence intervals, and scalable
resource estimations. Quantum 6, 707 (2022). https://doi.org/10.22331/q-2022-05-09-707

8. K. Miller, C. Broomfield, A. Cox, J. Kinast, B. Rodenburg, An improved volumetric metric for
quantum computers via more representative quantum circuit shapes (2022). arXiv:2207.02315.
https://doi.org/10.48550/arXiv.2207.02315

9. N. Moll et al. Quantum optimization using variational algorithms on near-term quantum devices.
Quantum Sci. Technol. 3(3), 030503 (2018). https://doi.org/10.1088/2058-9565/aab822

https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1038/s43586-024-00361-z
https://doi.org/10.1109/MSPEC.2018.8352557
https://doi.org/10.22331/q-2022-05-09-707
http://arxiv.org/abs/2207.02315
https://doi.org/10.48550/arXiv.2207.02315
https://doi.org/10.1088/2058-9565/aab822

5Information and Complexity Theory

In the previous two chapters, we have learned about the theoretical foundations
of computing and how practical classical computing machines operate. Using the
concept of a deterministic Turing machine, we have explored the idea of what
is computable and have concluded that any problem with a solution described
as an algorithm is theoretically solvable, and that deterministic Turing machines
can execute any algorithm. We noted that Turing machines with multiple tapes
and non-deterministic Turing machines can theoretically solve the same problems,
albeit in a more efficient manner. We then provided an overview of how classical
computers operate, recognizing that memory is finite and limited, and that the num-
ber of computational steps that can be performed within a finite time is bounded
by practical constraints, such as clock speeds, parallelizability, communication
overheads, and memory access speeds.

We now turn our attention to study the tractability of problems under the lens
of their complexity, i.e., the time and resources needed to execute algorithms,
and classify them. This enables us to allocate time and computational resources
to tractable problems and direct computational resources toward alternatives for
intractable problems, seeking approximate solutions.

Classical Decision Problems and Complexity Classes

We touch upon the idea of a decision problem in this chapter, i.e., using designated
accept or reject states, a deterministic (or a non-deterministic) Turing machine
can decide a problem as accept/yes/affirmative or reject/no/negative. Problems
are solved using an algorithm, which can be efficient (polynomial resources) or
inefficient (superpolynomial resources).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_5

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_5&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_5

56 5 Information and Complexity Theory

The time (number of steps) and space (memory) required to decide problems is
one important factor in classifying them. Another important factor is the notion of
verifiers and certificates. To understand the relations between various problems, we
will also introduce the concept of reducing a problem to another. In this chapter,
we will use the traveling salesman problem to indicate the differences between
problems and their complexities.

Let’s first consider the problem of finding the maximum number in a set. The
optimization version of this problem can be stated as

Given a set of integer numbers A ⊂ Z, find y ∈ A s.t. y ≥ z ∀ z ∈ A.
We can state the decision version of this problem as follows:
Given a set of integer numbers A ⊂ Z and z ∈ Z, does there exist a y ∈ A s.t.

y ≥ z?
It is straightforward to see that finding the maximum (optimization version) in

a set of numbers will take O(n) steps. For the decision version, we may simply
scan through the set to seek y ≥ z, requiring O(n) steps at most. For the decision
version of the problem, the accept case will be accompanied by a certificate, which
can be some y satisfying y ≥ z. The verifier is an algorithm that will verify this
certificate. For both versions of this problem, the verifier can go through the set
to find either the maximum or find y ≥ z, which is pretty much the decision
algorithm itself! Both the algorithm to decide the decision problem and verify
the certificate require a polynomial (of degree 1) number of steps. Therefore, the
decision problem is decidable and verifiable in polynomial time and belongs to the
complexity class P. We can also solve the optimization version of this problem in
polynomial time, but the class P is only defined for decision problems.

Note that if A is a tuple of integers, the certificate could instead be the index
of y in the tuple A. In this setting the verification can be done in constant O(1)
time for the decision version of the problem, while the optimization problem still
requires O(n) time.

Now let’s investigate traveling salesman problems.
One version of this problem is a decision problem:
Given a list of N cities and the distances between them, does there exist a path

such that each city is visited exactly once with the same starting and final city, and
the total distance is at most k?

A deterministic or non-deterministic Turing machine can decide this problem
by answering in the affirmative or negative. The best-known algorithms to decide
this problem with a deterministic Turing machine require exponential time in the
worst case. However, a non-deterministic Turing machine can decide this problem
in polynomial time.

In either case, we will also be provided a certificate for the affirmative case
in the form of the path that is shorter than k. Using a verifier, we can use the
certificate to confirm that the solution is indeed affirmative. The length of the
path (a sum of N distances) can be verified in O(N), polynomial time, using a
deterministic Turing machine.

Since the certificate is verifiable in polynomial time by a deterministic Tur-
ing machine, this decision problem belongs to the non-deterministic polynomial

Classical Decision Problems and Complexity Classes 57

time class NP. By this definition, the class of problems P also lies in NP. An
alternative and equivalent definition for NP is the class of problems decidable by
non-deterministic Turing machines in polynomial time. It is widely accepted, but
not proven that P ⊂ NP and P = NP.

Now we turn our attention to a special subset of problems in NP: NP-Complete
problems. Every problem in NP can be reduced to a problem in the class of NP-
Complete problems, where the reduction is efficient, requiring at most polynomial
time. By reducing any problem in NP to any NP-complete problem, one may solve
the equivalent NP-complete problem to implicitly solve the NP problem. These
decision problems are therefore the “hardest” problems in the class NP; solving
these efficiently (in polynomial time using a Turing machine) solves all problems
in NP efficiently.

Another version of the traveling salesman problem is an optimization problem:
Given a list of N cities and the distances between them, what is the shortest path

such that each city is visited exactly once, with the same starting and final city?
This is not a decision problem; it simply asks for an optimal solution. Even if

any Turing machine provides an optimal solution, we do not have any method to
verify that it is the optimum solution other than seeking the optimal solution itself,
which requires exponential time.

We will now finally introduce the NP-hard class of problems. The class NP-
hard is not restricted to decision problems. These problems are at least as hard as
NP-complete problems (the hardest problems in NP).

The conjectured relation among the decision problems NP and the general class
of problems NP-hard is shown in Fig.5.1.

Until now, we have mostly considered problems that are decidable by non-
deterministic Turing machines within polynomial time, and by deterministic
Turing machines within exponential time. The space required for these problems
is polynomial since a deterministic Turing machine can simply try out every pos-
sible solution one by one exhaustively, i.e., they belong to the class PSPACE.
A broader class of problems is problems that require exponential time, even for

Fig. 5.1 Conjectured
relation among P, NP,
NP-complete, and NP-hard
classes of problems

58 5 Information and Complexity Theory

Fig. 5.2 Conjectured
relation among broader
classes of decision problems

a non-deterministic Turing machine, and problems that require an exponential
amount of memory, which are the classes EXPTIME and EXPSPACE, respec-
tively. These decision problems are nested as P ⊆ NP ⊆ PSPACE ⊆ EXPTIME
⊆ EXPSPACE, as visualized in Fig. 5.2.

Probabilistic and Quantum Complexity Classes

We will now define a few more complexity classes and will establish the
conjectured relation between the power of classical computers and quantum
computers.

Bounded-Error Probabilistic Polynomial (BPP): Problems that can be
decided by a probabilistic Turing machine in polynomial time with a probabil-
ity of correctly accepting a problem ≥ 2 3 and a probability of incorrectly accepting
a problem ≤ 1 3 for all instances.

Probabilistic Polynomial (PP): Problems that can be decided by a probabilistic
Turing machine in polynomial time with a probability of correctly accepting a
problem > 1 2 and a probability of incorrectly accepting a problem ≤ 1

2 for all
instances.

The difference between PP and BPP lies in the fact that for BPP, the algorithm
can simply be repeated a few times to (exponentially) increase the probability of
correctly deciding the input. For PP, this guarantee is lost. Naturally, BPP ⊆ PP.

Quantum computers are probabilistic devices. We have not yet introduced quan-
tum computing, but at this point it is sufficient to know that a quantum computer
executes a quantum circuit prepared by a classical computer. The size of this quan-
tum circuit determines the time required for its execution. Quantum circuits, which
are considered feasible, are polynomial in size. A quantum computer can prob-
abilistically decide on an input. We define the class of problems BQP now as
follows.

Probabilistic and Quantum Complexity Classes 59

Bounded-Error Quantum Polynomial (BQP): Problems that can be decided
by a quantum computer in polynomial time with a probability of correctly accept-
ing a problem ≥ 2 3 and a probability of incorrectly accepting a problem ≤ 1 3 for
all instances.

The circuit that the quantum computer runs must be generable (and executable)
within polynomial time.

We will now summarize our entire discussion. For classical computing, problem
complexities are nested as.

P ⊆ NP ⊆ PP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE
For classical probabilistic and quantum computing problems, complexities are

nested as
P ⊆ BPP ⊆ BQP ⊆ PP ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE
which is summarized in Fig. 5.3.
From these classes, we can get a better understanding of quantum computers

and their power and efficiency. Since BQP ⊆ EXPTIME, quantum computers are
at most exponentially more efficient than classical computers, and since BPP ⊆
BQP computers are at least as powerful as classical computers. What is surprising

Fig. 5.3 Conjectured nesting
relation among NP, BPP,
BQP, and PP. The arrows
indicate subsets, i.e., BQP ⊂
PP

60 5 Information and Complexity Theory

is that for decision problems, BQP ⊆ PSPACE, i.e., a classical computer can,
given enough time, decide any problem decidable by a quantum computer using
polynomial space. For more detailed analyses with more classes, e.g., MA and
QMA, we refer the readers to [1, 2].

Information is Physical

The concepts of information and computing are implicitly connected to physics.
We start our discussion with a thought experiment leading to a paradox: Maxwell’s
Demon [3].

Consider a box with particles bouncing around, similar to a gaseous phase of
matter. The box is divided into two chambers FAST and SLOW, with a door
operated by a “demon.” The demon keeps track of all the particles by measur-
ing their velocities, and opens and shuts a hypothetical door in such a manner
that fast-moving particles are allowed to move from chamber SLOW to FAST, and
slow-moving particles are allowed to move from chamber FAST to SLOW. The
door remains shut otherwise.

By doing this long enough, most, or all, of the particles will eventually be sep-
arated into FAST and SLOW, i.e., hot and cold gases, respectively, and the entropy
of the system will have decreased as illustrated in Fig. 5.4. Considering that the
door is small enough and the energy expended in tracking the particles and oper-
ating the door is negligible, one may then (fallaciously) consider operating a heat
pump to obtain “free” energy in violation of the second law of thermodynamics.

Fig. 5.4 Maxwell’s “demon” separating slow (blue) and fast (red) particles into FAST and SLOW
chambers

References 61

We know that violating the second law of thermodynamics is impossible: the
total entropy of a closed system cannot decrease. Although there are many trou-
blesome idealizations in this thought experiment, one scenario is that even if the
demon can measure the velocities of the particles and operate an ideal door, the
velocity information will have to be tracked and stored. Eventually, old information
will have to be deleted (either during one separation cycle or any subsequent sep-
aration cycles). This act of erasing previously known information can be directly
considered an increase in entropy. Any decrease in entropy as a result of separating
the particles will be offset by the erasure of information.

Landauer’s principle formalizes this concept. For interested readers, we note
that this is a nuanced topic and refer them to [4] for an excellent exposition on
this subject. With a preamble, we have set the stage for the remainder of this book.

References

1. R. Manenti, M. Motta, Quantum Information Science (Oxford University Press, Incorporated,
Oxford, 2023)

2. J. Watrous, Quantum Computational Complexity, in Encyclopedia of Complexity and Systems
Science, ed. by R.A. Meyers (Springer New York, New York NY, 2009), pp. 7174–7201. https://
doi.org/10.1007/978-0-387-30440-3_428

3. The Sorting Demon of Maxwell 1. Nature 20(501), 126–126 (1879). https://doi.org/10.1038/
020126a0

4. C.H. Bennett, Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon.
Stud. Hist. Philos. Sci. Part B: Stud. Hist. Philos. Mod. Phys. 34(3), 501–510 (2003). https://
doi.org/10.1016/S1355-2198(03)00039-X

https://doi.org/10.1007/978-0-387-30440-3_428
https://doi.org/10.1007/978-0-387-30440-3_428
https://doi.org/10.1038/020126a0
https://doi.org/10.1038/020126a0
https://doi.org/10.1016/S1355-2198(03)00039-X
https://doi.org/10.1016/S1355-2198(03)00039-X

Part II

A Brief Introduction to Quantum Mechanics

This part provides a concise introduction to the essential concepts and experi-
ments underlying quantum mechanics, presented specifically for computational
engineers and applied scientists. It is not meant to serve as a comprehensive
quantum mechanics course, but rather as a focused overview that highlights key
physical phenomena and foundational principles relevant to quantum computing.

We emphasize physical intuition and conceptual clarity over exhaustive theo-
retical treatments. Readers seeking deeper exploration or rigorous derivations are
encouraged to consult standard quantum mechanics textbooks. The topics intro-
duced here set the stage for understanding quantum computing concepts presented
in subsequent parts.

Chapter 6, “A Gentle Introduction to Quantum Mechanics”, introduces the
structure of quantum theory through foundational concepts, including quantum
states, superposition, measurement, and probability amplitudes. Emphasis is placed
on developing intuition for how quantum systems behave differently from classical
systems, with a minimal use of mathematical formalism.

Chapter 7, “The Stern–Gerlach Experiment”, presents the Stern–Gerlach exper-
iment as a concrete illustration of measurement, state collapse, and spin quan-
tization. The chapter illustrates how discrete measurement outcomes emerge in
quantum systems and how they are related to the mathematical structure of
quantum states.

Chapter 8, “Photon Polarization”, uses polarization states of photons to rein-
force and generalize earlier concepts. The chapter explores basis changes and
probabilistic outcomes in the context of light, providing an accessible experimental
analogy for qubit operations.

https://doi.org/10.1007/978-3-032-03325-3_6
https://doi.org/10.1007/978-3-032-03325-3_7
https://doi.org/10.1007/978-3-032-03325-3_8

6A Gentle Introduction to Quantum
Mechanics

The theories of physics that were discovered and studied up to the end of the
nineteenth century are what we now call classical physics. These include and are
not limited to Newton’s laws, continuum mechanics, and Maxwell’s equations for
electromagnetism. These frameworks describe a wide range of macroscopic phe-
nomena with remarkable accuracy. However, as experimental techniques advanced,
discrepancies began to emerge between classical predictions and empirical obser-
vations, particularly at atomic and subatomic scales. These failures ushered in the
era of modern physics, characterized by two revolutionary frameworks: relativity
and quantum mechanics.

One of the crises that was resolved by quantum mechanics is the “ultraviolet
catastrophe.” According to the classical Rayleigh–Jeans law describing the fre-
quency spectrum of a black body at a given temperature, a black body would emit
unbounded energy in the ultraviolet spectrum and higher frequencies:

Bν (T) =
2ν2 kBT

c2

where Bν (T) is the intensity of the frequency ν for a blackbody at equilibrium tem-
perature T and kB, c are the Boltzmann constant and the speed of light respectively.
As ν → ∞, Bν → ∞, which is unphysical and disagrees with experiments.

This paradox was resolved by Max Planck, who proposed that electromag-
netic energy is emitted in discrete packets, or quanta [1]. These ideas were later
extended by Albert Einstein to explain the photoelectric effect and by Niels Bohr
to develop models for the atom. These developments culminated in the formula-
tion of quantum mechanics, a new theoretical framework capable of accurately
describing atomic and subatomic phenomena.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_6

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_6&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_6

66 6 A Gentle Introduction to Quantum Mechanics

Quantum mechanics is governed by a set of mathematical postulates, analogous
to the foundational laws of classical mechanics. These postulates define how quan-
tum systems are represented, how observables are associated with operators, and
how measurements and time evolution are described.

Postulate 1—Wavefunctions:
The state of a quantum mechanical system is completely specified by a wavefunc-

tion | in a complex Hilbert space such that | = 1.

Postulate 2—Observables:
For every observable property of a quantum mechanical system described by

| , there exists a linear Hermitian operator A. The operator encodes all possible
measurement outcomes for that observable.

Postulate 3—Measurements:
The outcomes of any measurement of an observable A will be limited to the

eigenvalues λa of A.

Postulate 4—Expectation Values:
The expected value of an observable A for a system in state | is given by
|A| .
The probability of obtaining an outcome λa with a corresponding eigenvector |a

is

p(a) = ψ |(|a a|)| ψ

Postulate 5—Time Evolution:
The wavefunction of a quantum system evolves in time according to the time-

dependent Schrodinger equation:

ih
d

dt
| (t) = H | (t)

where h is Planck’s constant and H is the Hamiltonian for the system.

Postulate 6—Wavefunction Collapse:
Upon measuring an observable A and obtaining an eigenvalue λa, the system’s

state collapses to the corresponding eigenvector |a .
Although quantum mechanics has profound physical implications, its mathe-

matical formalism is relatively straightforward, relying primarily on linear algebra
and probability theory. The key challenge is not mastering the mathematics but
developing intuition for how quantum systems behave—how they evolve, interfere,
and respond to measurement.

To build that intuition, the next two chapters present two simple but foun-
dational experiments—the Stern–Gerlach experiment and photon polarization—
framed for accessibility and insight rather than rigor. Readers are encouraged to
read this part with a focus on conceptual understanding, not on fully internalizing

References 67

every equation. For a deeper and more formal treatment, standard textbooks in
quantum mechanics are recommended [2].

References

1. M. Planck, Kritik zweier Sätze des Hrn. W. Wien. Annalen der Physik 308(12), 764–766 (1900).
https://doi.org/10.1002/andp.19003081215

2. J.S. Townsend, A modern approach to quantum mechanics, 2nd ed. (University Science Books,
Mill Valley, Calif, 2012)

https://doi.org/10.1002/andp.19003081215

7The Stern–Gerlach Experiment

The Stern–Gerlach experiment [1] and its modifications help describe some basic
concepts of quantum mechanics. We start our discussion by introducing a single
Stern–Gerlach device.

Beam Source

The input to a Stern–Gerlach device is a beam of silver atoms. This is achieved
by evaporating silver using an electric furnace in a vacuum and allowing the gas
to escape through a small aperture, as shown in Fig. 7.1.

The reason for using silver is that it has one unpaired valence electron. We
are looking at this experiment in retrospect through the lens of modern quan-
tum theory; the original Stern–Gerlach experiment was designed to prove the “old
quantum theory” [2] which has not withstood experimental scrutiny.

Electron Spin

Electrons carry an intrinsic property of “spin.” The term spin is a misnomer; it
is quite unlike the classical spin of objects with mass [3]. The reason this intrin-
sic property is called spin is that it exhibits behavior similar to an object having
angular momentum.

Depending on the direction of their spin, electrons will deflect in a magnetic
field. All the electrons in silver atoms, except the unpaired 5s1 electron, are paired
as shown in Fig. 7.2 according to the aufbau rule. Paired electrons cancel out the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_7

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_7&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_7

70 7 The Stern–Gerlach Experiment

Fig. 7.1 Beam source for a Stern–Gerlach Experiment. A furnace heats silver particles, which are
emitted through a small aperture as a beam of particles

Fig. 7.2 Pairing of electrons in silver atoms in shells according to the aufbau principle

net effect of particles with opposite spins in a magnetic field. The unpaired elec-
tron, however, should cause a silver atom to deflect in the presence of a magnetic
field depending on which direction the spin is aligned.

Stern–Gerlach Device and Detector

Inside the Stern–Gerlach device is a magnetic field created using magnetic poles
with a special shape: one pointed pole and one flat pole as shown in Fig. 7.3.
The magnetic field created by this arrangement is inhomogeneous, or spatially
varying, in the x − z plane. This inhomogeneous field should deflect the silver
atoms according to the angle formed between the magnetic field lines and the
magnetic dipole of the unpaired electron. In this case, it deflects the electrons
toward either magnet according to the alignment of the electron’s spin.

Stern–Gerlach Experiments 71

Fig. 7.3 Left: Silver beam passing through a Stern–Gerlach device. Right: Schematic of the inho-
mogeneous magnetic field inside a Stern–Gerlach device

After passing through the magnetic field, the silver atoms collide with a “de-
tector,” which in the original experiment was simply a metallic plate on which the
silver atoms were deposited and could be observed at the end of the experiment.

Stern–Gerlach Experiments

Experiment 1

Since the particles coming from the furnace are not arranged in any specific order
or aligned in any direction, one may expect that the orientation of the spin for
the unpaired electron should be random. Based on this intuition, a continuum of
deflections for the particles is to be expected. The surprising result is that the beam
of silver atoms is split into two, as shown in Fig. 7.4. This experiment hints that the
spin property of electrons is quantized. However, this phenomenon of quantization
alone does not entirely capture the counterintuitive nature of quantum mechanics.

We now label this arrangement of magnets with the magnetic field lines parallel
to the Z-axis, a Stern–Gerlach-Z (SGz) device. By rotating the device 90◦ around
the Y -axis, we can create a Stern–Gerlach-X (SGx) device. This experiment is
restated in a schematic form in Fig. 7.5 where F denotes the intensity of the beam
entering the device. The intensity of the beam split in two is denoted by F/2 as it
is halved.

We use this schematic to describe further experiments that demonstrate the
counterintuitive nature of quantum mechanics.

72 7 The Stern–Gerlach Experiment

Fig. 7.4 The Stern–Gerlach device splits a beam into two distinct beams

Fig. 7.5 Schematic of a Stern–Gerlach device splitting a beam

Experiment 2

In our second experiment, shown schematically in Fig. 7.6, we feed the beam
deflected in the +Z direction by an SGz device into another SGz device. Since
the particles exiting each of the beams of the SGz device are aligned in the +Z
direction, we expect the second SGz device to once again deflect those particles
in the +Z. Indeed, this is what is observed experimentally.

Fig. 7.6 Two Stern–Gerlach devices aligned with the same (Z) axis

Stern–Gerlach Experiments 73

Fig. 7.7 Two Stern–Gerlach devices are aligned with mutually orthogonal axes

Experiment 3

We now replace the second SGz device with an SGx device, as shown in Fig. 7.7.
The SGx device is identical to an SGz device, except that it is rotated 90

◦
in the

x–z plane. It is observed that the SGx device further splits the beam into two,
based on the X component of spin.

This is not too surprising, as one may make an analogy to a spinning top form-
ing an angle of 45◦ with the Z and X axes; the beam deflected in the +X direction
by the SGx device had a quantized spin component of both +Z and +X.

To model each silver particle passing through these devices, one could per-
haps assign a probability of 1 2 to the +Z and +X property of spin for particles
in the beam exiting the furnace. Furthermore, the SGz and SGx devices can be
hypothesized to be “filtering” the beam into beams with +Z and +X properties,
respectively. To test this hypothesis, we proceed with the next experiment.

Experiment 4

Based on the hypothesis from the previous experiment, one would expect that
passing a beam deflected (filtered) in the +Z and +X directions once more through
an SGz device would deflect the beam in the +Z direction once more. This is not
observed experimentally. As shown in Fig. 7.8, the beam is once again split in the
+Z and -Z directions!

These experiments suggest that the properties that deflect the beam in the x
and z directions are not independent (or not orthogonal in a mathematical sense).
These results necessitate the use of probability amplitudes to model the state of
particles in the beam, which take on values within the unit disc in the complex
plane, instead of probabilities, which are real numbers between 0 and 1.

Fig. 7.8 Three Stern–Gerlach devices are aligned with alternating orthogonal axes

74 7 The Stern–Gerlach Experiment

We now restate these results mathematically. In our statement, we do not pro-
vide a rigorous derivation of a quantum mechanical framework from experimental
results; such derivations can be found in numerous quantum mechanical textbooks.
Providing such a detailed discussion is not only lengthy and redundant but may
also be of little use or interest to the target audience of this book. Instead, we
provide a mathematical description that “works” to foster an intuition of quantum
mechanics.

We first define an orthogonal basis {|+z , |−z for the property of spin based
on deflection in the +Z and -Z directions. Note that this differs significantly from
the vectors +z, −z + z, −z + z,−z in Euclidean space which are not orthogo-
nal. Bra-ket notation allows one to avoid this confusion by describing quantum
mechanical objects in a separate notation.

We may model the particles exiting the electric furnace and entering the SGz
device in Experiment 1 as the quantum state

|ψ =
1√
2
|+z +

1 √
2
|−z

where the phase is omitted for simplicity. After exiting the device, we observe that
particles are deflected in the +Z and -Z directions with probabilities 1 2 each. From
this we deduce that

p1(|+z) = +z | a 2 = 1

2

p1(|−z) = −z | a 2 = 1

2

The splitting action of the SGz device may be modeled as the projectors
|+z +z| and |−z −z| for the +Z and −Z deflections, respectively.

Now we can model the states of particles in the two beams exiting the SGz
device:

+Z Beam: (|+z +z|)|ψ = 1√
2
|+z .

-Z Beam: (|−z −z|)|ψ = 1√
2
|−z .

According to Experiment 2, if we now send a particle in the beam deflected in
the +Z direction into another SGz device and measure the intensity of the beam
we will get

p2(|+z , |+z) =
1

2

p2(|+z , |−z) = 0

This is apparent by computing
+Z, +Z Beam: (|+z +z|)(|+z +z|)|ψ = 1√

2
|+z .

+Z, -Z Beam: (|−z −z|)(|+z +z|)|ψ = 0.

References 75

To model Experiment 3, we first need to introduce an orthogonal basis for the
property of spin based on deflection in the +X and -X directions:

{|+x , |−x

where |+x = 1 √
2
|+z + 1 √

2
|−z and |−x = 1 √

2
|+z − 1 √

2
|−z .

Similar to the {|+z , |−z +z , |−z basis, the effect of the SGx device may
be modeled as the projectors |+x +x| and |−x −x| for the +X and -X deflections
respectively.

According to experimental results, for the beam deflected in the +Z direction
and further split by the SGx device:

p3(|+z , |+x) =
1

4

p3(|+z , |−x) =
1

4

These probabilities are apparent by computing the corresponding probability
amplitudes:

+Z, +X Beam: (|+x +x|)(|+z +z|)|ψ = 12 |+x .
+Z, -X Beam: (|−x −x|)(|+z +z|)|ψ = 12 |−x .
Finally, we can model Experiment 4 similarly as
+Z, +X, +Z Beam: (|+z +z|)(|+x +x|)(|+z +z|)|ψ = 1

2
√
2
|+x .

+Z, +X, -Z Beam: (|−z −z|)(|+x +x|)(|+z +z|)|ψ = 1
2
√
2
|−x .

Corresponding to the experimentally observed probabilities

p4(|+z , |+x , |+z) = 1

8

p4(|+z , |+x , |−z) = 1

8

As we can see, quantum mechanics successfully models these non-intuitive
experimental observations.

References

1. W. Gerlach, O. Stern, Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld.
Z. Physik, 9(1), pp. 349–352, (1922), https://doi.org/10.1007/BF01326983.

2. H. Johnston, How the Stern–Gerlach experiment made physicists believe in quantum mechan-
ics. Available: https://physicsworld.com/a/how-the-stern-gerlach-experiment-made-physicists-
believe-in-quantum-mechanics/

3. A. Becker, Quantum particles aren’t spinning. so where does their spin come from?. Available:
https://www.scientificamerican.com/article/quantum-particles-arent-spinning-so-where-does-
their-spin-come-from/

https://doi.org/10.1007/BF01326983
https://physicsworld.com/a/how-the-stern-gerlach-experiment-made-physicists-believe-in-quantum-mechanics/
https://physicsworld.com/a/how-the-stern-gerlach-experiment-made-physicists-believe-in-quantum-mechanics/
https://www.scientificamerican.com/article/quantum-particles-arent-spinning-so-where-does-their-spin-come-from/
https://www.scientificamerican.com/article/quantum-particles-arent-spinning-so-where-does-their-spin-come-from/

8Photon Polarization

We now repeat the exercise in the previous chapter, applied to photons. By study-
ing a different physical system using the quantum mechanical framework, we aim
to strengthen the reader’s intuition.

Let’s investigate the interaction of light and polarizing filters through a series
of experiments (assuming perfect polarizing filters).

Experiment 1

In this experiment, we investigate light from an unpolarized source, e.g., sunlight
or an incandescent light bulb. By passing this light through a polarizing light filter
aligned horizontally, we observe that the intensity of light has been halved, as
illustrated in Fig. 8.1.

Experiment 2

Now we add another polarizing light filter, aligned vertically. Unsurprisingly, we
observe experimentally that all the light is blocked as depicted in Fig. 8.2.

Experiment 3

Let’s add one more polarizing filter, aligned diagonally at 45 degrees to either the
horizontal or vertical polarizer. Furthermore, we can position this filter either first
or last. As expected, all of the light remains blocked as shown in Fig. 8.3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_8

77

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_8&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_8

78 8 Photon Polarization

Fig. 8.1 Unpolarized light enters a polarizing filter, and polarized light exits

Fig. 8.2 Polarized light is fully filtered by an orthogonal filter

Experiment 4 79

Fig. 8.3 Adding another filter after orthogonally aligned filters yields no change

Experiment 4

Now, let’s position the diagonally aligned polarizing filter between the horizontal
and vertical filters. Against our classical intuition, we can experimentally observe
that some light does pass through the filters. Figure 8.4 shows a polarizing filter
rotated 45

◦
placed between the horizontally and vertically aligned filters.

We can now examine these experiments using the quantum mechanical frame-
work. As we did for the Stern–Gerlach experiments, let’s assign an orthonormal
basis {|x , |y to photons polarized horizontally and vertically. Notice that, unlike
the basis {|+z , |−z used for the Stern–Gerlach experiments, x and y are in fact
orthogonal in Euclidean space. We point this out to emphasize that labels used in
kets and bras are simply for convenience and may not bear any resemblance to
their usual classical interpretation.

Using the {|x , |y basis, we can model the photons from the light source as

|ψ =
1√
2
|x +

1 √
2
eiφ |y

up to an overall phase where φ is an unknown random phase. We can also model
horizontally and vertically aligned polarizing filters as projection matrices:

Fhor = |x x = 1 0
0 0

Fver = |y y| = 0 0
0 1

80 8 Photon Polarization

Fig. 8.4 Inserting a filter between orthogonal filters at 45
◦
to both filters allows light to pass

through

Note that since photons that are not aligned with the filter are absorbed and/or
reflected by the filter, unlike the Stern–Gerlach device, which simply separates the
two orthogonal states and allows all particles to pass through.

Furthermore, a diagonally aligned filter can be represented as a rotation of a
horizontal filter using a rotation matrix with θ = 45 ◦

Rθ = cos(θ) − sin(θ)
sin(θ) cos(θ)

R45◦ =
1√
2

1 1
1 −1

Fdiag = R45◦Fhor = 1√
2

1 1
1 −1

1 0
0 0

= 1√
2

1 0
1 0

By passing unpolarized photons through a horizontally aligned filter, according
to Experiment 1, we get

ψ |Fhor|ψ =
1

2
|x

which matches the 50% light intensity observed experimentally. Introducing a
vertically aligned filter as laid out in Experiment 2, we get

ψ |FverFhor|ψ = ψ | 0 0
0 0

|ψ = 0

Experiment 4 81

as expected.
For Experiment 3, we can clearly see that

ψ |FdiagFverFhor|ψ = ψ |Fdiag
0 0
0 0

|ψ = ψ | 0 0
0 0

|ψ = 0

Finally, for Experiment 4, we can compute

ψ |FverFdiagFhor|ψ =
1

4
1 1

0 0
0 1

1 0
1 0

1 0
0 0

1
1

= 1

4

matching the 25% light intensity observed experimentally.
In the discussion above, we have barely scratched the surface of the rich physics

modeled by a quantum mechanical treatment of photons. As an example, one may
also create basis vectors

|R =
1 √
2
|x +

1 √
2
i|y , |L = 1√

2
|x −

1 √
2
i|y

to represent right- and left-circularly polarized light. However, these discussions
are beyond the scope of this text.

Part III

The Quantum Computing Model

Armed with the mathematical preliminaries and having seen a preview of the
non-intuitive nature of quantum mechanics, we now begin to formally introduce
the quantum computing model. We emphasize clarity and functional understand-
ing over exhaustive technical detail. Readers are guided through qubits, quantum
gates, measurements, and circuit-based models—concepts that will recur through-
out the remainder of the book. Familiarity with these elements is essential for
understanding how quantum algorithms are constructed and analyzed.

Our discussion starts directly with the quantum circuit model. Historically,
quantum Turing machines were the first quantum computational model. Since
quantum Turing machines are unwieldy and non-intuitive, the ideas behind uni-
versal circuit families have been applied to formulate the quantum circuit model,
which is polynomially equivalent to quantum Turing machines.

To motivate the practical realization of quantum computers, we begin by briefly
reviewing the DiVincenzo criteria, which need to be fulfilled to build a quantum
computer [1]:

1. A physical machine consisting of a scalable number of qubits.

2. The ability to initialize the qubits in a known quantum state.

3. The qubits must have coherence times longer than the time required to execute
a quantum gate.

4. The ability to perform a universal set of gates.

5. The ability to measure qubits.

The chapters in this part provide foundational knowledge and build progres-
sively toward more complex quantum computing concepts:

Chapter 9, “Qubits, Quantum Registers, and Quantum Gates”, introduces
qubits—the fundamental units of quantum information—and describes how mul-
tiple qubits combine into quantum registers. Essential quantum gates and their
algebraic properties are presented.

https://doi.org/10.1007/978-3-032-03325-3_9

84 Part III: The Quantum Computing Model

Chapter 10, “Quantum Measurements and Circuits”, covers quantum measure-
ment theory, introducing measurement operators and the quantum circuit model. It
also addresses practical aspects like bitstring sampling and the principle of deferred
measurement.

Chapter 11, “Superposition and Entanglement”, explores the uniquely quantum
concepts of superposition and entanglement using quantum circuits, emphasizing
intuition and illustrative examples.

Chapter 12, “Classical and Reversible Computation”, bridges classical computa-
tion and quantum logic, explaining classical logic embedding into quantum circuits
and discussing the concept of reversible computation and quantum oracles.

Chapter 13, “Access Models and Data Representation”, introduces quantum
access models, including sparse access and block-encoding models. It also dis-
cusses Hermitian dilation and Pauli-basis decomposition, crucial for understanding
advanced quantum algorithms.

Chapter 14, “Limitations of Quantum Computers”, discusses fundamental the-
oretical limits on quantum computing, including key no-go theorems such as the
no-cloning and no-deletion theorems, and limitations on quantum speedups.

Chapter 15, “Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms”,
provides concrete examples of quantum algorithms demonstrating exponential
speedups compared to classical counterparts, emphasizing complexity class sep-
arations and the potential of quantum computing. The Abelian hidden subgroup
problem is introduced as a unifying framework for exponential speedups.

Reference

1. D.P. DiVincenzo, D. Loss, Quantum information is physical. Superlattices and
Microstructures. 23(3–4), 419–432 (1998). https://doi.org/10.1006/spmi.1997.
0520

https://doi.org/10.1007/978-3-032-03325-3_10
https://doi.org/10.1007/978-3-032-03325-3_11
https://doi.org/10.1007/978-3-032-03325-3_12
https://doi.org/10.1007/978-3-032-03325-3_13
https://doi.org/10.1007/978-3-032-03325-3_14
https://doi.org/10.1007/978-3-032-03325-3_15
https://doi.org/10.1006/spmi.1997.0520
https://doi.org/10.1006/spmi.1997.0520

9Qubits, Quantum Registers,
and Quantum Gates

Qubits

Classical digital computers use binary “bits,” 0 and 1, as fundamental units of
information. Quantum computers use an analogous quantum bit, or a “qubit,” as
their elementary unit. While a classical bit can exist in only one of two defi-
nite states, a qubit can exist in a superposition of both |0 and |1 , enabling
fundamentally new modes of computation.

Definition:
A qubit (quantum bit) is a quantum system whose state is represented by a unit vector
|ψ in a 2D complex Hilbert space H ∼= C 2. The state can be expressed as a linear
combination (superposition) of two orthogonal basis states, typically denoted as |0
and |1 , such that

|ψ = α|0 + β |1

where α, β ∈ C and |α|2 + |β|2 = 1. |α|2, |β|2 are the probabilities of measuring
the qubit in the states |0 , |1 , respectively.

Recall that |0 and |1 are orthonormal basis states in the 0 − 1 basis, also

referred to as the Z basis, which can be represented as the basis vectors |0 = 1
0

and |1 = 0
1

.

Alternative orthonormal bases are often used to highlight different measurement
contexts:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_9

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_9&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_9

86 9 Qubits, Quantum Registers, and Quantum Gates

• The X basis consists of the states |+ and |− , defined as

|+ =
1√
2
(|0 + |1), |− = 1√

2
(|0 − |1)

• The Y basis consists of the states |+i and |−i , defined as

|+i =
1 √
2
(|0 + i|1), |−i = 1√

2
(|0 − i|1)

The state of a qubit may be visualized as a point on the surface of a “Bloch
sphere,” as shown in Fig. 9.1. However, this visualization omits the global phase
of a qubit (e.g., a quantum state |ψ = −|0 or |ψ = i| 0 appears identical on the
Bloch sphere) and does not readily generalize to multi-qubit systems. However, it
is a useful visual tool to understand the relation between various qubit bases and
the action of single-qubit gates.

A qubit may be measured in an arbitrary (orthogonal) basis |ψ = α|I + β|II .
According to the measurement postulate (Part II: A Brief Introduction to Quan-
tum Mechanics) the basis states |I and |II can be observed with probabilities
|α|2 and |β|2, respectively. If no operations are applied after measurement, further
measurements in the same basis (|I and |II) will repeatedly yield the same qubit
state that was originally measured.

Physically, a qubit is typically realized using a two-state quantum system (e.g.,
the electronic states of ions) or by utilizing two energy levels of a quantum system
(e.g., the ground state and first excited state of a quantum harmonic oscillator).

The keen reader would automatically inquire about the implications of other
energy levels. Indeed, they can be utilized, and this conceptual extension is known

Fig. 9.1 A Bloch sphere with the X , Y , and Z bases labeled, and an arbitrary quantum state |ψ
on the surface of the sphere

Registers of Qubits 87

Fig. 9.2 Single-qubit X, Y,
and Z gates operating on
qubits

Fig. 9.3 Controlled
single-qubit cX (or CNOT)
gates. The gates on the left
are conditioned on the control
qubit being in the |1 state,
indicated by a filled circle.
The representations at the top
and bottom are equivalent

Fig. 9.4 A multi-qubit
controlled gate

as “qudits.” However, since qudits are not used in this book (and can be mapped
onto qubits), we burden the interested reader with seeking out this information.

Registers of Qubits

Similar to a classical register of bits, a set of qubits may be combined into a
register of qubits. However, the state of a register of qubits differs significantly
from a classical register of bits.

Definition: A register of n qubits is represented as a state vector |ψ ∈ H
where H ∼= C

2n and is described as a superposition of 2n orthogonal states

|0 , |1 , . . . , |2n − 1 as |ψ =
2n−1

i=0
αi| i where the probability amplitudes αj satisfy

the probability completeness relation
2n−1

i=0
|αi|2 = 1 according to the Born rule.

A quantum register is a tuple of n qubits, whose combined state is represented as
the quantum system |ψ ∈ C2n , corresponding to a tensor product of the individual
Hilbert spaces of the qubits.

88 9 Qubits, Quantum Registers, and Quantum Gates

The combined state |ψ of the two qubits |ψ1 α1|0 + β1|1 and |ψ2
α2|0 +β2|1 may be represented in Dirac notation as a Kronecker product, denoted
by ⊗, of the individual qubits with various equivalent notations:

|ψ =| ψ1 | ψ2 | ψ1 ψ2 |ψ1ψ2

= (α1|0 + β1| 1) ⊗ (α2|0 + β2|1)
= α1α2| 0 0 + α1β2| 0 1 + α2β1|1 0 + β1β2|1 1

= α1α2|0 0 + α1β2|0 1 + α2β1|1 0 + β1β2|1 1
= α1α2

1
0

⊗ 1
0

+ α2β1
1
0

⊗ 0
1

+ α1β2
0
1

⊗ 1
0

+ β1β2
0
1

⊗ 0
1

= α1α2

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠ + α2β1

⎛

⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ + α1β2

⎛
⎜⎜⎝
0
0
1
0

⎞
⎟⎟⎠ + β1β2

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠

and in vector form, using the computational basis:

|ψ =

⎛

⎜⎜⎝

α1α2

α2β1

α1β2

β1β2

⎞
⎟⎟⎠

Additional qubits will follow the same pattern, resulting in an exponentially
large state space for the qubit register. A change in the order of the qubits in the
quantum register simply shuffles the representation of the state corresponding to
the definition of the Kronecker product. Registers of qubits can be used to represent
data in various formats, which is discussed in Chapter 13: Access Models and Data
Representation.

Analogous to logic gates, which operate on classical bits and registers of bits,
quantum gates operate on qubits and registers of qubits. While classical logic gates
take one or more classical bits as input and produce classical output states deter-
ministically or probabilistically based on the input, a quantum gate acts on one or
more qubits and outputs the same qubits in a new quantum state, generally via a
unitary transformation.

Unlike classical logical operations, where the input bits remain available after
the application of a logic gate, the input state of a quantum gate is not readily avail-
able after application of a gate. By the principles of quantum mechanics, quantum
gates are unitary operators. Thus, it is always possible to reverse a quantum gate
to recover the input state, though this comes at the expense of losing access to
the output state. In contrast, most classical logic gates (e.g., AND, OR) are not
reversible; their inputs cannot, in general, be reconstructed from the outputs.

Quantum Gates 89

Quantum Gates

In the gate-based quantum computing model, operations on qubits are represented
as quantum gates, or simply gates. Some quantum gates are analogous to classi-
cal gate operations, e.g., the X gate is analogous to a classical NOT operation.
However, quantum gates may not have a corresponding classical counterpart, e.g.,
a Hadamard H gate.

Definition: A quantum gate operation on n qubits is represented as a unitary matrix
U ∈ C2n×2 n .

Quantum gates can be conveniently represented as complex unitary matrices, in
line with the column vector representation of qubits. The simplest gates are single-
qubit gates represented as SU (2) ∈ C2×2 matrices. Some important single-qubit
gates are the identity gate I , the Pauli gate set {X , Y , Z }, and the Hadamard gate H .
Their matrix representations and descriptions are provided in Table. 9.1.

As an example, the X gate is represented as the unitary matrix

X = 0 1
1 0

The X gate is the quantum analog of the classical NOT gate. As an example,
applying the X gate to the basis state |0 yields |1 and vice versa:

X |0 = 0 1
1 0

1
0

= 0
1

= | 1

X |1 = 0 1
1 0

0
1

= 1
0

= |0

and in general

X |ψ = X (α|0 + β|1) = β|0 + α|1

Table. 9.1 lists various commonly used gates with their matrix representations
and descriptions.

Quantum gates can also act on n qubits, in which case they can be represented
in SU (2n) ∈ C2n× 2n . Multiple qubit gates typically arise as controlled versions
of gates, of which cX (or cNOT) is a commonly used one. A controlled gate
manipulates the state of a “target qubit,” conditioned on the state of a “control
qubit.” The SWAP gate is another common gate that swaps states between qubits.
Controlled gates can be represented in block form. As an example, the matrix

90 9 Qubits, Quantum Registers, and Quantum Gates

Ta
b
le
 9
.1

C
om

m
on

 g
at
es
 a
nd

 th
ei
r
de
sc
ri
pt
io
ns

G
at
e

M
at
ri
x

re
pr
es
en
ta
tio

n
E
ig
en
de
co
m
po
si
tio

n
D
es
cr
ip
tio

n

I
1
 0

0
 1

−
N
o
op
er
at
io
n
on
 q
ub
it.
 Q
ub
it
st
at
e
is
 u
nc
ha
ng
ed

X
0
 1

1
 0

1 √ 2

1
 1

1
−1

1
 0

0
−1

1 √ 2

1
 1

1
−1

H
Z
H

Pa
ul
i X

 g
at
e
an
d
m
at
ri
x.
 1
80

◦
ro
ta
tio

n
ar
ou
nd
 X
 .
T
ra
ns
fo
rm

 b
as
is

st
at
es
 | 0

 t
o

| 1
an
d

| 1
to
 | 0

Y
0

−i

i
0

1
 0

0
i

1 √ 2

1
 1

1
−1

1
 0

0
−1

1 √ 2

1
 1

1
−1

1
 0

0
−i

SH
Z
H
S
†

Pa
ul
i Y

 g
at
e
an
d
m
at
ri
x.
 1
80

◦
ro
ta
tio

n
ar
ou
nd
 Y

Z
1

 0

0
−1

1
 0

0
−1

Z

Pa
ul
i Z

 g
at
e
an
d
m
at
ri
x.
18
0◦

ro
ta
tio

n
ar
ou
nd
 Z
. A

pp
ly
 p
ha
se
 o
f
−1

to
 | 1

H

1 √ 2

1
 1

1
−1

−
90

◦
C
W
 r
ot
at
io
n
ar
ou
nd
 X
 .
U
se
d
to
 c
re
at
e
su
pe
rp
os
iti
on

 f
ro
m
 b
as
is

st
at
e

| 0

S
1
 0

0
i

−
Ph

as
e
ga
te
. E

qu
iv
al
en
t t
o

√ Z
 g
at
e.
 9
0◦

 r
ot
at
io
n
ar
ou
nd
 Z
. A

pp
ly

ph
as
e
of
 i
to
 | 1

N
ot
e
th
at
 t
he
 e
ig
en
st
at
es
 o
f
th
e
X
 , Y

 ,
an
d
Z
 g
at
es
 c
oi
nc
id
e
w
ith

 t
he
 X
 , Y

 ,
an
d
Z
 b
as
es
 s
ho
w
n
on
 t
he
 B
lo
ch
 s
ph
er
e
in
 F
ig
. 9

.1
. T

hi
s
is
 w

he
re
 t
he
 t
er
m
in
ol
og
y

“m
ea
su
ri
ng
 in

 th
e
X
 , Y

 ,
or
 Z
”
ba
si
s
co
m
es
 f
ro
m
. T

hi
s
is
 d
is
cu
ss
ed
 in

 m
or
e
de
ta
il
in
 C
ha
pt
er
 1
0:
 Q
ua
nt
um

 M
ea
su
re
m
en
ts
 a
nd

 C
ir
cu
its

Quantum Gates 91

representation of the cX gate, where the first qubit from the left is the control
qubit and the second qubit is the target qubit, is

cX = |0 0| ⊗ I + |1 1| ⊗ X = I
X

=

⎛

⎜⎜⎝

1 0
0 1

0 1
1 0

⎞
⎟⎟⎠

where | | is an outer product.
Controlled gates may be conditioned on the |1 state as well. A cX gate

conditioned on |1 operates as

|0 0| ⊗ X + |1 1| ⊗ I = X
I

=

⎛

⎜⎜⎝

0 1
1 0

1 0
0 1

⎞
⎟⎟⎠

In general, controlled gates may be conditioned on multiple qubits and may
apply any general unitary operation. A general unitary gate U conditioned on the
logical state of k qubits represented as a bitstring bin(i), where the bitstring is
formed from a binary representation of {i ∈ Z| i ≥ 0}, operates as

ckU =
j i

|j j| ⊗ I + |i i| ⊗ U

and can be represented as a block-diagonal matrix with the matrix representation
of U on the ith block and I on the remaining blocks:

ckU =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
. . .

I
U

I
. . .

I

⎞

⎟⎟ ⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

All quantum gates are unitary operations, which ensures the normalization of
quantum states according to the Born rule. Consequently, all quantum gates are
also reversible operations, with the reverse operation simply being the Hermitian
transpose or conjugate transpose of the quantum gate.

Gates acting on qubits correspond to left multiplication, with the ket represent-
ing the quantum state of the qubits. As an example, consider a register of three

92 9 Qubits, Quantum Registers, and Quantum Gates

qubits in the state |000 . Applying a Hadamard gate to the first qubit (from the
left) and a Pauli X gate to the last qubit is represented as

(H ⊗ I ⊗ X)|000 = (H ⊗ I ⊗ I) |001 = 1√
2
(|001 + |101)

As another example, consider a register of two qubits in the state |00 with a
Hadamard gate applied to the first qubit followed by a CNOT gate controlled by
the first qubit applied to the second qubit:

(|00 00| + |01 01| + |10 11| + |11 10|)|00 = | 00 + |11

Note that the order of operations progresses from right to left as usual for
matrix multiplication, which is the opposite of the order used for quantum circuits
introduced in Chap. 10: Quantum Measurements and Circuits. It is customary not
to include the I gate when the qubits on which the operation is applied are implied.

Quantum gates are one of the building blocks of quantum circuits (discussed in
Chap. 10: Quantum Measurements and Circuits). They are represented in quantum
circuits as boxes placed on lines representing the qubits they act on. The label
inside the box indicates the type of gate. Multiple quantum gates may also be
combined in this representation with a description for brevity when describing
algorithms. The control bits in controlled gates are represented as filled or empty
circles, depending on whether the gate is conditioned on that qubit being in the
state |0 or |1 respectively.

Like classical Boolean logic gates, quantum gates can also form a universal
gate set. The fundamental difference is that while classical universal gate sets can
implement arbitrary logical operations exactly, quantum universal gate sets can
approximate arbitrary unitary operations to arbitrary precision.

This implies that any arbitrary quantum gate can be approximated using a uni-
versal gate set. The Solovay–Kitaev theorem [1] is a central theorem in quantum
computing which shows that the approximation error using a universal gate set
scales as O logc 1 for a single-qubit gate where c ≈ 2 and O m logc m for a
set of mCNOT s and single-qubit unitaries. This corresponds to a polylogarithmic
increase in the approximation using a universal gate set over the original number
of arbitrary gates, which is efficient. The statement of the theorem for qubits is as
follows.

Theorem [2]: Let G be an instruction set for SU (d), and let a desired accuracy
0 be given. There is a constant c such that for any U ∈ SU (d) there exists a

finite sequence S of gates from G of length O(logc(1)) and such that U − S ≤ .

The physical interpretation of a quantum gate depends on the underlying archi-
tecture. For a superconducting transmon qubit architecture, quantum gates are
typically implemented as microwave pulses corresponding to the resonant fre-
quency of the transmon qubits. Underlying hardware implementations can have

References 93

a variety of gate sets. Algorithms are typically agnostic to the hardware imple-
mentation since all quantum gates are converted to the target hardware’s gate set
(implemented as physical processes) in a process called transpilation. We discuss
the quantum computer programming stack in more detail in Part IV: Programming
Quantum Computers. The underlying hardware may also have a specific connec-
tivity graph, which dictates the possibility of controlled gate operations between
qubits.

The SWAP gate is another common gate that swaps the states between qubits,
i.e., performs the map |ψ φ → |φ ψ . While this may seem trivial as inter-
changing the order of qubits, it is typically necessary for applied quantum
computing on realistic hardware which does not have all-to-all connectivity for
two-qubit interactions between qubits.

The transpilation process introduces SWAP gates to “move” qubit states around
to allow controlled operations between any set of qubits that might not be con-
nected by the topology of the target hardware. Although this is not an issue
for “fault-tolerant” or “error-corrected” devices, a multitude of SWAP gates can
introduce unwanted noise into the system in current realistic devices, making
them a point of concern for NISQ hardware. Similarly, controlled gates (or
multi-controlled) gates typically introduce errors larger than those of single-qubit
gates.

References

1. A. Y. Kitaev, Quantum computations: algorithms and error correction, Russ. Math. Surv.,
52(16), pp. 1191–1249, (1997). https://doi.org/10.1070/RM1997v052n06ABEH002155

2. C. M. Dawson, M. A. Nielsen, The Solovay-Kitaev algorithm. Quantum Info. Comput., 6(1),
pp. 81–95, (2006)

https://doi.org/10.1070/RM1997v052n06ABEH002155

10Quantum Measurements and Circuits

In this chapter, we introduce the measurement operation to read out the states
of qubits. Later in the chapter, we combine registers of qubits, gates, and
measurements to form quantum circuits.

A quantum state is defined using probability amplitudes. To read a state, a
series of measurements of the state needs to be performed, and the measurement
statistics will correspond to the probability amplitudes of the quantum state and
the basis used for the measurement [1]. Note that, in general, to exactly infer
the probability amplitudes of a quantum state through measurements, an infinite
number of measurements is needed in accordance with the Law of Large Numbers,
regardless of the number of qubits.

Measurement Operators

We first define a measurement operator Mm for measuring a quantum state |ψ .

Definition: Given a quantum state |ψ and a measurement operator Mm where m is
a measurement outcome, the probability of measuring an outcome m is.

p(m) = ψ |M † mMm| ψ
and the state of the quantum system after measuring an outcome m is

Mm|ψ √
p(m)

such that the completeness relation

m
p(m) = 1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_10

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_10&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_10

96 10 Quantum Measurements and Circuits

Fig. 10.1 Symbol for a measurement operation

is satisfied.
Measurement operators are projection operations. In gate-based quantum com-

puting, projective measurements in the computational basis (the Z or |0 -|1 basis)
are typically used corresponding to

M0 = |0 0| = 1 0
0 0

, M1 = |1 1| = 0 0
0 1

and are represented by a “meter” symbol in quantum circuits (Fig. 10.1).
For measurements over multiple qubits, we use the notation Mj where j is an

integer or bitstring indicating the measurement outcome. In quantum algorithms,
measurements may be performed over a few qubits in registers or all qubits.

As an example, consider a two-qubit system in the state

|ψ =
1

2
(|00 + |01 + |10 + | 11)

with a measurement being performed on only the first qubit. The first qubit is
measured in the state |0 with

p(0) = ψ |M † 0 M0|ψ = ψ |M0|ψ

= 1

2
(|00 + |01 + |10 + |11)

†
(|0 0| ⊗ I)

1

2
(|00 + |01 + |10 + |11) = 1

2

and the final state after measuring the first qubit in the state |0 is

M0|ψ √
p(0)

=
(|0 0| ⊗ I) 1

2 (|00 + |01 + |10 + |11)
1 √
2

=
1 √
2
(|00 + |01)

Note the renormalization of the system according to the Born rule [2]. Similarly,
the first qubit is measured in the state |1 with p(1) = 12 and the final state is

M1|ψ √
p(1)

=
(|1 1| ⊗ I) 1

2 (|00 + |01 + |10 + |11)
1 √
2

=
1 √
2
(|10 + |11)

Bitstring Sampling 97

Measurements may be performed to either read out an entire quantum register
or as a flag to indicate the successful completion of an operation. Qubits used as a
flag are typically called ancilla qubits, and their measurement can signal whether a
desired computational step has succeeded or requires repetition.

Note that measurements will uncover the squared moduli (probability) of the
complex numbers (probability amplitudes) defining the probability amplitude of a
quantum state. To recover additional information, e.g., the phases of the probability
amplitudes, a process known as quantum state tomography [3] is performed.

Quantum states also have an overall phase, which is not measurable; only a relative
overall phase between two states is measurable. As an example, consider the two
quantum states

|ψ = α|0 + β|1 , |φ = i(α|0 + β|1)

The phase i distinguishes |ψ from |φ and cannot be detected from projective
measurements alone, since

ψ M † 0 M0 ψ = φ M † 0 M0 φ = |α|2

ψ M † 1 M1 ψ = φ M † 1 M1 φ = |β|2

A hardware implementation will typically only allow a Z basis (|0 -|1) measure-
ment. To perform measurements in another basis (e.g., X or Y bases), the qubits can
be “rotated” to the desired basis by applying gate operations and then measured. This
is discussed later in this chapter.

Bitstring Sampling

Bitstring sampling is straightforward: circuits are executed repeatedly, and qubit
registers are measured at the end of each execution. The sampled bitstrings are
then used for further computation. Sampling a quantum state |ψ ∈ C2n can be
described mathematically as sampling from the distribution

p(j) = ψ |M † j Mj|ψ ∀ j ∈ 0, 2n − 1

which will yield an outcome j with probability p(j). In its raw form, data output
from a quantum computer is a distribution of sampled bitstrings.

98 10 Quantum Measurements and Circuits

Quantum Circuits

Working with algebraic forms of algorithms can be unwieldy and difficult to
visualize. Quantum circuits are a convenient visual representation of quantum algo-
rithms, clearly showing sequences of gates and measurements acting on qubits.
Each horizontal line in a quantum circuit diagram represents a qubit, and each
symbol or block placed on these lines represents quantum gates or measurements.

For example, consider a three-qubit register |ABC . Suppose an H gate is
applied to qubit A, a n X gate is applied to qubit C, followed by a CNOT gate
controlled by qubit A acting on qubit B, and, finally, all qubits are measured.
These operations can conveniently be represented in a quantum circuit, as shown
in Fig. 10.2.

Note that the operations in a quantum circuit are ordered from left to right,
unlike algebraic notation, which typically lists operations from right to left. For
instance, the sequence of unitary operations UAUBUC |ψ is represented in a
quantum circuit as shown in Fig. 10.3.

Additionally, controlled operations conditioned on the control qubit being either
in the state |1 or |0 are represented using filled or empty circles, respectively, as
shown in Fig. 10.4.

Quantum registers can be ordered using either little-endian or big-endian nota-
tion. In little-endian ordering, the rightmost qubit in algebraic notation is indexed
as 0, while in big-endian ordering, the leftmost qubit indexed as 0. In a quantum
circuit, the first qubit from the top of a register is indexed as 0. When implementing
quantum algorithms, endian consistency is critical, mixing the ordering results in

Fig. 10.2 Quantum circuit representation of gate and measurement operations

Fig. 10.3 Order of operations in circuit representation for UAUBUC |ψ

Fig. 10.4 Controlled X gates
conditioned on Left: |1 ;
Right: |0

99

Fig. 10.5 Left: A SWAP
gate; Right: Decomposition
of a SWAP gate

a shuffling of the basis states. The shuffling leads to the measurement distribution
being distorted, leading to an incorrect interpretation of the measurement distri-
bution. Both big- and little-endian conventions are used in libraries for quantum
computing. As examples, Qiskit [4] uses little-endian notation, while Pennylane
[5] uses big-endian notation. We illustrate this using a register of three qubits
qreg = |q1q2q3 . In Qiskit (Little endian), qubit q3 will be indexed classically as
qreg[0], and in Pennylane (Big endian) it will be indexed as qreg[2]. Additionally,
Pauli strings (introduced in Chap. 13: Access Models and Data Representation)
must also be indexed consistently. In this book all figures and equations are in
big-endian notation, and all Qiskit code is in little-endian notation.

Another important gate we revisit here is the SWAP gate. In quantum com-
puters, operations between arbitrary qubits are not always directly possible due to
the physical connectivity of the qubits. However, it is always possible to shuttle
around the quantum state of a qubit using SWAP gates. The symbol for a SWAP
gate and its decomposition are shown in Fig. 10.5.

Quantum circuits can be viewed as directed acyclic graphs, where the nodes
represent gates and the edges represent the qubits on which the gates operate.
Quantum circuits may also represent hybrid quantum–classical operations, such as
mid-circuit measurements, classical conditional logic, and dynamic circuit struc-
tures. However, these advanced circuit concepts are outside the scope of this book
and are not used in the remainder of this book.

In practice, both the circuit depth (the number of sequential gate layers) and
circuit width (the number of qubits used) are important resource metrics that affect
whether a given circuit can be realistically implemented on current hardware. Spe-
cialized algorithms and quantum compilers exist that optimize circuit depth and
width, often by reordering gates, identifying redundant operations, or mapping
the circuit to the native gate set of the target hardware. Furthermore, since real
quantum hardware supports only a limited set of native gate sets, quantum circuits
must often be compiled from high-level descriptions into sequences of hardware-
supported gates, which can introduce additional overhead. The effects of noise
and decoherence in current devices make minimizing circuit depth critical for
obtaining reliable results. Some platforms now also support classical feedback,
where measurement outcomes can influence subsequent quantum operations within
a circuit.

100 10 Quantum Measurements and Circuits

Fig. 10.6 Left: Circuit with gate operation controlled by measurement outcome. Right: Equiva-
lent circuit with measurement deferred to the end of the circuit

Principle of Deferred Measurement

The principle of deferred measurement states that measurements can always be
pushed forward or “deferred” to the end of a quantum circuit. If the outcome
of a mid-circuit measurement is used to classically control subsequent quantum
gates, one may simply replace the gate with controlled quantum gates as shown in
Fig. 10.6.

References

1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition, 1st ed. Cambridge University Press, (2012). https://doi.org/10.1017/CBO
9780511976667

2. M. Born, Zur quantenmechanik der stoßvorgänge, Z. Physik, 37(12), pp. 863–867, (1926).
https://doi.org/10.1007/BF01397477

3. J. B. Altepeter, D. F. V. James, P. G. Kwiat, Qubit quantum state tomography. In Quantum State
Estimation, vol. 649, M. Paris, J. Řeháček, Eds., In Lecture Notes in Physics, 649 , Berlin, Hei-
delberg: Springer Berlin Heidelberg, pp. 113–145. (2004). https://doi.org/10.1007/978-3-540-
44481-7_4.

4. Qiskit contributors, Qiskit: An Open-source Framework for Quantum Computing. (2023). https://
doi.org/10.5281/ZENODO.2573505

5. V. Bergholm et al., PennyLane: Automatic differentiation of hybrid quantum-classical compu-
tations. (2018). arXiv. https://doi.org/10.48550/ARXIV.1811.04968

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/BF01397477
https://doi.org/10.1007/978-3-540-44481-7_4
https://doi.org/10.1007/978-3-540-44481-7_4
https://doi.org/10.5281/ZENODO.2573505
https://doi.org/10.5281/ZENODO.2573505
https://doi.org/10.48550/ARXIV.1811.04968

11Superposition and Entanglement

Superposition is a unique property of quantum computing [1]. A quantum state can
exist in a superposition of states. As an example, a single qubit |ψ can exist in
a superposition of |0 and |1 . A register of n qubits can exist in an exponentially
large superposition of N = 2 n states, which form an orthonormal basis in the
Hilbert space H : C2 n . Representation of an arbitrary quantum state of n qubits
requires O(2n) classical registers. This compact representation as a superposition
of basis states enables exponentially efficient representation of data on quantum
computers.

The |0 , |1 basis vectors are assigned to the Z basis of qubits by convention.
Hardware implementations of qubits will typically allow measurement in only one
basis, e.g., the spin state of a fermion. To measure in another basis in hardware
implementations, it is convenient to rotate the basis of the qubits and measure
them instead of implementing measurement directly in a rotated basis. However,
single-qubit rotations do not correspond to arbitrary unitary rotations. Instead, they
are limited by the Kronecker product structure of the qubits H : C2 n .

The Hadamard (H) gate puts qubits in uniform superposition, in which all basis
states have the same probability amplitude. As an example, we provide code below
to put qubits in uniform superposition and measure their states as shown in the
quantum circuit in Fig. 11.1 with the output shown in Fig. 11.2. The Hadamard
gate is applied to all three qubits to put them in the uniform superposition state

(H ⊗ H ⊗ H)|000 1

2
√
2
(|000 001 010 111)

All three qubits are then measured, which yields one of the basis states
|000 ,|001 ,|010 , …,|111 . This process is repeated 215 = 32768 times to obtain
the distribution shown in Fig. 11.2. As the number of measurements is increased,

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_11

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_11&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_11

102 11 Superposition and Entanglement

the distribution of measurements for qubits in uniform superposition converges to
the uniform distribution:

#!/usr/bin/python3

from matplotlib import pyplot as plt

import qiskit

from qiskit_aer.primitives import SamplerV2

from qiskit.visualization import plot_histogram

Create a register of 3 qubits

myQRegister = qiskit.QuantumRegister(3, ’\psi’)

Create a register of 3 classical bits

myCRegister = qiskit.ClassicalRegister(3,’ClassicalBits’)

Create a quantum circuit with using myRegister

myCircuit = qiskit.QuantumCircuit(myQRegister, myCRegister)

Hadamard gates on al qubits

myCircuit.h(myQRegister)

Measure all the qubits in myQRegister and store state in myCRegis-

ter

myCircuit.measure(myQRegister,myCRegister)

Simulate the circuit

sampler = SamplerV2()
job = sampler.run([myCircuit],shots=2**15)
result = job.result()[0].data.ClassicalBits.get_counts()

Plot a bar chart of all the results

plot_histogram(result, title=’Uniform Superposition’)

plt.show()

Entanglement is another property unique to quantum computation [1]. Entan-
gled qubits have a correlated state. A maximal entanglement for a pair of qubits
means that the state of one qubit can be fully determined by measuring the state
of the other qubit. The simplest set of maximally entangled states are two-qubit
states known as the Bell states:

+ = 1√
2
(|00 + |11), − =

1√
2
(|00 − |11)

+ = 1√
2
(|01 + |10), − = 1√

2
(|01 − |10)

11 Superposition and Entanglement 103

Fig. 11.1 Circuit putting all qubits in superposition

Fig. 11.2 Measurements demonstrating a uniform superposition of basis states

If the first qubit of the state + = 1√
2
(|01 + |11) is measured as |0 , the

second qubit is also in the state |0 , and if the first qubit is measured as |1 ,
the second qubit is also in the state |1 . Note that this is different from the state
|ψ = |00 + |11 , which is not an entangled state. The generalization of fully
entangled states for more than 2 qubits are known as GHZ states.

Mathematically, entangled qubits cannot be separated into a Kronecker product.
The state |00 can be written as |0 ⊗ |0 : however, it is impossible to separate

+ into such a Kronecker product of Z basis states or any other basis formed
by a tensor product of the bases of the individual qubits. Similarly, single-qubit
gates cannot rotate an entangled quantum state to a state separable into Kronecker
products.

Entangled states are necessary for quantum registers to go from a Hilbert space
described by individual U (2) rotations of qubit states to the larger Hilbert space
described by U (2n) rotations of a quantum register.

104 11 Superposition and Entanglement

Fig. 11.3 Circuit to entangle
two qubits by preparing a
Bell state

Fig. 11.4 Measurements
demonstrating the
entanglement of two qubits

In the following code we provide an example of a circuit, shown in Fig. 11.3,
creating the entangled state + with the output measurements shown in
Fig. 11.4:

#!/usr/bin/python3

from matplotlib import pyplot as plt

import qiskit

from qiskit_aer.primitives import SamplerV2

from qiskit.visualization import plot_histogram

Create a register of 2 qubits

myQRegister = qiskit.QuantumRegister(2, ’\psi’)

Create a register of 2 classical bits

myCRegister = qiskit.ClassicalRegister(2,’ClassicalBits’)

Create a quantum circuit with using myRegister

myCircuit = qiskit.QuantumCircuit(myQRegister, myCRegister)

Hadamard gates on first qubit

myCircuit.h(0)

Reference 105

CNOT gate controlled by first qubit on second qubit

myCircuit.cx(0,1)

Measure all the qubits in myQRegister and store state in myCRegis-

ter

myCircuit.measure(myQRegister,myCRegister)

Simulate the circuit

sampler = SamplerV2()
job = sampler.run([myCircuit],shots=2**15)
result = job.result()[0].data.ClassicalBits.get_counts()

Plot a bar chart of all the results

plot_histogram(result, title=’Bell State’)

plt.show()

Reference

1. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniver-
sary Edition, 1st ed. Cambridge University Press, (2012). https://doi.org/10.1017/CBO978051
1976667

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

12Classical and Reversible Computation

All quantum gates (except measurement) are reversible since they are unitary oper-
ations. Therefore, the corresponding inverse operation of a gate O is O†, where †
denotes the Hermitian conjugate of O. For a quantum circuit without a measure-
ment operation, the inverse operation is an application of the Hermitian conjugates
of the gates in reverse order.

However, classical computation operations are not necessarily reversible, e.g.,
the classical logic gates AND and OR. Regardless, it is possible to perform all
classical computation operations on quantum computers [1].

Classical Computation on Quantum Computers

First, we note that the classical NAND gate is a universal classical gate, i.e., any
classical Boolean operation can be represented as a combination of NAND gates.

We also note that the FANOUT operation may be needed in classical logic
circuits involving combinations of NAND gates. Therefore, if the NAND operation
and FANOUT operation can be performed on a gate-based quantum computer, then
any classical computation can be performed on a quantum computer.

A reversible version of these gates can be formed using ancillary qubits, or “an-
cilla” qubits. Ancilla qubits are often utilized in quantum computing to implement
non-unitary (possibly irreversible) operations as a unitary (reversible) operation.
The measured state of ancilla qubits can either be discarded at the end of the
computation, used to “post-select” the unmeasured state in the remaining qubits
(e.g., continue if ancilla is measured as |1 , restart if measured as |0 , or used
for branching operations for the remainder of a quantum–classical workflow using
dynamic circuits.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_12

107

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_12&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_12

108 12 Classical and Reversible Computation

Fig. 12.1 A quantum
implementation of Left: a
NAND gate; and Right: a
FANOUT operation

Even though this approach does not make efficient use of quantum resources,
it implies that all classical computation can be performed on quantum computers.
Both the NAND and FANOUT operations can be performed using a “controlled-
controlled-NOT,” or a ccNOT gate:

ccNOT =

⎛

⎜⎜⎜⎜⎜⎝

1
. . .

1
1

1

⎞

⎟⎟⎟⎟⎟⎠

as shown in Fig. 12.1.
Note that measurements are not reversible since they are projection operations,

which are rank-deficient (ignoring trivial cases, e.g., I).
Even though this approach does not make efficient use of quantum resources, it

implies that all classical computation (using the universal circuit family introduced
in Lecture 3: Theory of Computing) can be performed on quantum computers.
Both the NAND and FANOUT operations can be performed using a Toffoli gate,
or a ccNOT gate as shown in Fig. 12.1. Note that although the FANOUT operation
copies classical information, this does not generalize to arbitrary quantum states
and does not violate the no-cloning theorem. Note also that it is trivial to convert
the NAND gate to an AND gate by supplying 0 as an input instead of 1.

Reversible Computing

We have shown above that all classical computing can be performed using quantum
circuits, simply using the fact that NAND gates (a universal classical gate set) and
FANOUT operations are sufficient to implement any Boolean circuit. However,
this strategy requires a large number of ancilla qubits to store intermediate com-
putations, often referred to as “garbage.” To alleviate this issue of excess garbage,
we introduce here Bennet’s “uncompute” trick to remove garbage collected in
ancilla qubits.

Consider the task of computing the sequence of AND operations:

f (a, b, c) = a ∧ b ∧ c

Reversible Computing 109

We may compute this function by composing reversible AND gates as shown
in Fig. 12.2. For this example a ∧ b may be considered as garbage and a ∧ b∧ c is
the desired result. To make the ancilla containing the garbage a ∧ b available for
any subsequent computation, we can “uncompute” a ∧ b and a ∧ b ∧ c as shown
in Fig. 12.2.

A general recipe for efficient reversible computation, known as Bennett’s
uncompute trick [2], is shown in Fig. 12.3 for a general Boolean operation
f : {0, 1}n → {0, 1}o given a corresponding unitary Uf .

This uncompute trick can be used to prove efficient reversible computation of
classical computation as follows.

Theorem [2]: A multi-tape Turing machine using time T and space S can be
simulated reversibly (or using a quantum circuit) using either.

• O T 1+ time and O(S log T) space
• O(T) time and O(ST) space

Fig. 12.2 Left: Composing AND gates to compute a ∧ b ∧ c; Right: Identical computation with
garbage removal

Fig. 12.3 Classical computation performed for n input bits and o ≤ m output bits reversibly with
ancillae restored to |0⊗m for further computation

110 12 Classical and Reversible Computation

for any 0.
We emphasize that these constructs are motivated by the need to establish

relations between classical and quantum computational complexities and do not
indicate the usual implementation of quantum algorithms for applied problems.

Quantum Oracles

It is important to note that any arbitrary Boolean function f : {0, 1}n → {0, 1}m
can be implemented in a reversible manner as shown in Fig. 12.4:

Uf |x y = |x y ⊕ f (x)

Since all the input bitstrings x and y can be inferred from the output, Uf is
reversible.

We will refer to an oracle of this form as a quantum “basis state” oracle.
An actual implementation of the gate (or collection of gates) Uf is often

unknown and unnecessary for analysis. Oracles are a useful abstraction (and
idealization) of some computational procedure. They are used to analyze the com-
putational power of various computing machines and are often used to identify
complexity classes. Such examples will be shown in Lecture 15: Simon’s Deutsch
jozsa, and Bernstein vazirani Algorithms.

To analyze the complexity of some quantum algorithms, it suffices to know that
Uf exists with an assumption of “black box” or “oracle” access.

A slightly more useful form of oracles is a quantum “phase oracle.” Let’s now
consider a Boolean function g : {0, 1}n → {0, 1} that outputs a single bit. A phase
oracle simply “marks” the output bits with a phase as shown in Fig. 12.5:

Ug |x = (−1)g(x)|x

Fig. 12.4 A reversible implementation of a Boolean function f : {0, 1}n → {0, 1}m where x ∈
{0, 1}n and y, f (x) ∈ {0, 1}m and ⊕ denotes a bitwise XOR operation

Fig. 12.5 A quantum phase
oracle

Quantum Oracles 111

Fig. 12.6 Using a quantum
basis state oracle as a phase
oracle

We now demonstrate a procedure to convert a quantum basis state oracle into a
quantum phase oracle. Consider Uf with m = 1 in the following quantum circuit
(Fig. 12.6).

Note: |− = HX |0 = 1√
2
(|0 − |1)

|ψ1 |x 1 √
2
(|0 − |1)

|ψ2 |x 1√
2
(|f (x) ⊕ 0 − |f (x) ⊕ 1)

= |x 1√
2
(|f (x) − |¬f (x))

Considering each case for f (x) ∈ {0, 1} separately:

|ψ2
|x 1 √

2
(|0 − |1), f (x) = 0

|x 1√
2
(|1 − |0), f (x) = 1

which simplifies to

|ψ2 (−1)f (x)|x −

which is effectively a phase oracle with an ancilla qubit.
In this chapter, we have provided an overview of connections between classi-

cal computing and quantum computing in the context of manipulating classical
data in the form of bitstrings. Although this is useful to demonstrate the capa-
bility of quantum computers to process classical information and will be used in
Lecture 15: Simon’s Deutsch Jozsa, and Bernstein Vazirani Algorithms, to show
an exponential speedup of quantum computers over classical computers, practical
quantum algorithms do not rely on this framework. In the next chapter, we will
introduce access models and data representations that are used to develop quantum
algorithms for scientific and engineering computation tasks.

112 12 Classical and Reversible Computation

References

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary
Edition, 1st edn (Cambridge University Press, 2012). https://doi.org/10.1017/CBO978051197
6667

2. C.H. Bennett, Time/space trade-offs for reversible computation. SIAM J. Comput. 18(4), 766–
776 (1989). https://doi.org/10.1137/0218053

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1137/0218053

13Access Models and Data
Representation

Classical information is represented as bitstrings in classical computers. The most
direct extension to quantum computers—called basis embedding—represents a
classical bitstring (e.g., “0101010010”) as the quantum state |0101010010 , as
shown previously. However, this representation is inefficient since it requires the
same number of qubits as classical bits and does not exploit the additional quan-
tum degrees of freedom, i.e., the phase and probability amplitudes of the basis
states. For example, a vector a ∈ R2 n in basis embedding would require O(2n)
qubits, while amplitude encoding can represent it with only n qubits.

Embedding data into the phase of a basis state is known as phase or angle
embedding. Similarly, embedding data into the probability amplitude of a basis
state is known as amplitude encoding or amplitude embedding [1]. Both ampli-
tude embedding and phase embedding are limited by the definition of quantum
states, i.e., the normalization due to the Born rule and the periodicity of phases.
Amplitude encoding is the method of choice for quantum algorithms for scientific
computing and engineering [2]. Various other encoding methods are used in quan-
tum machine learning applications, and they are discussed in Chap. 38: Quantum
Machine Learning In the remainder of this book, we exclusively utilize amplitude
embedding unless specified otherwise.

Consider the vector

a = 2n−1

i=0 aie i

where ei denotes the ith standard basis vector and n is the number of qubits. If
a vector has less than 2n components, the remainder of the vector may be zero-
padded without any loss of generality. An amplitude encoding of this vector is

|a = 1

a 2

2n−1

i=0
ai|i

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_13

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_13&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_13

114 13 Access Models and Data Representation

where |i is the ith basis vector of the quantum state. In this notation, |a represents
the quantum state whose amplitudes encode the entries of a, while |i denotes the
ith standard basis vector.

In comparison, a classical register of n bits represents an element of {0, 1}n ,
and a vector a ∈ R2 n requires O(2n) bits for storage, e.g., using the IEEE-754
floating-point format [3]. In amplitude encoding, n qubits suffice, provided the
state is normalized.

Access models in quantum computing specify how data is provided to quan-
tum algorithms. The complexity of such algorithms is typically measured by the
number of oracle queries—calls to unitary operators that encapsulate data access
or operations, abstracting implementation details.

Oracles are essential because they enable algorithms to work with data or sub-
routines whose explicit implementation may be unknown or even intractable. For
example, oracles frequently provide access to matrix entries or prepare quan-
tum states in scientific computing applications. Efficient data access is critical for
algorithmic performance and scalability.

Two principal access models for matrices are

• The sparse access model, optimized for matrices with few non-zero entries per
row or column.

• The block-encoding model (also known as qubitization), which embeds a matrix
as a block of a larger unitary to enable efficient polynomial transformations.

In both access models, oracles serve as unitary operations that act as “black boxes,”
encapsulating specific operations or data needed by the algorithm. In the case of
a linear system problem Ax = b this could be the entries of the matrix A or a
method to prepare the vector b.

The complexity of quantum algorithms is often defined by the number of oracle
accesses required, as these oracles abstract the implementation details of com-
plex operations, allowing algorithms to access necessary information efficiently.
The number of accesses or “queries” to oracles is often referred to as the query
complexity of a quantum algorithm. A typical underlying assumption is that the
information being accessed using the oracle is efficiently computable. For most
algorithms, an oracle implementation that scales polylogarithmically in the num-
ber of gates with the problem size (or polynomially with the number of qubits) is
considered efficient.

There are various oracles for different operations in quantum algorithms. An
early access model for matrices, on which the HHL quantum linear system algo-
rithm is based, provides access to an approximation of the unitary matrix operator
U ≈ e itA, where A is a Hermitian matrix, through a Hamiltonian simulation proce-
dure (Chap. 28: Hamiltonian Simulation Techniques). For the ideas and algorithms
considered in this book, the more recent and efficient sparse access model [4] and
block-encoding model [5, 6] are used to access the entries of a matrix, and a state
preparation oracle is used to prepare a quantum state used by an algorithm.

Block-Encoding Model 115

We will first introduce the Sparse Access Model and the Block-encoding model
for matrices. Subsequently, we introduce the Hermitian dilation trick to encode an
arbitrary matrix as a Hermitian matrix. We then provide a (usually inefficient)
recipe to block-encode oracles for matrices as a sum of Pauli strings.

Sparse Access Model

The sparse access model is designed for matrices with a high proportion of zero
entries. It uses position and value oracles (unitary operations) to efficiently retrieve
non-zero elements:

Position Oracle Opos
A : Provides the position of non-trivially zero elements in a

row:

Opos
A : |i, v → |i, j(i, v) ∀ i, j ∈ {1, . . . , N }, v ∈ {1, . . . , d}

i : row (or column) number

j : column (or row) number.

v : enumeration of (typically) non-zero entries in row (or column) i.
Value Oracle Oval

A : Provides the value of matrix elements:

Oval
A : |i, j, z → i, j, Ai,j ⊕ z ∀z ∈ {0, 1}⊗s

z : initialized bitstring of length s
Ai,j ⊕ z ∈ {0, 1}⊗s : a bitstring of length s encoding the matrix entry Ai,j ∈ C.

Block-Encoding Model

A more powerful and general access model is the block-encoding model. A block-
encoding oracle is access to a unitary (any quantum circuit) of the form

UA = A/α ∗
∗ ∗

where α ∈ R + is a subnormalization factor, A is the desired matrix to be embedded
in UA, and ∗ are irrelevant entries.

This form is central to methods based on qubitization and quantum signal pro-
cessing, which are the most powerful and optimal methods for most problems. The
main idea is to apply the block-encoded unitary to a state

UA|0 b = A/α ∗
∗ ∗

b
0

= Ab/α
∗ = 1

α
|0 Ab + |⊥

116 13 Access Models and Data Representation

Measuring the first qubit in the state |0 indicates a successful matrix–vector
multiplication.

Note that although this 2×2 block encoding uses a single ancilla qubit, a regis-
ter of qubits can also be used for block encoding, which requires m ancilla qubits
to be measured as |0 ⊗m. We also note that since UA is unitary, it is necessary that
A/α2 ≤ 1.

The success probability of successfully measuring the ancilla qubits as |0 ⊗m

can be defined as follows [2].
Consider any α such that A/α 2 ≤ 1 so that

A/α = 0|⊗m ⊗ In UA |0 ⊗m ⊗ In

The probability of successfully measuring |0 ⊗m is

p |0 ⊗m =
1

α2 Ab
2

A block-encoding of this form is often written in short-hand as a “(α, m) block-
encoding of A.”

A block-encoding may also encode matrices inexactly, i.e.,

A − α 0m ⊗ In UA 0m ⊗ I n ≤

Such block-encodings are often referred to as a “(α, m) block-encoding of
A.”

Note that it is always possible to restate a (α, m) block-encoding of A as a
(αβ, m) block-encoding of A/β (where β 0).

Block-encoded oracles also allow addition, products, and tensor products of
matrices. Block-encoded matrices may be added using the linear combination of
unitaries method, discussed in Chap. 22: Linear Combination of unitaries, and
procedures for multiplication are covered in Chap. 26, Matrix Vector Multiplica-
tions and Affine Linear Operations. References [5, 11, 12] provide implementation
details of these operations. The specifics of oracle implementations for access mod-
els are beyond the scope of this book since they are problem-dependent and an
active area of research. Recent work has made progress in developing circuits to
encode various classes of sparse matrices [7, 13].

We finally note that a sparse access model can be transformed into a block-
encoding model using O(1) queries to Opos

A and Oval
A and O(poly log n) additional

gates [14].

Pauli Basis and Decomposition 117

Hermitian Dilation

We note that various formalisms in quantum computing including oracles for
matrices may require the matrices to be Hermitian. In case a matrix A is not
Hermitian, its Hermitian dilation H can often be used instead:

H = 0 A
A† 0

The Hermitian dilation has the same condition number as A, is diagonalizable,
and the eigenvalues λi of the matrix H are pairwise ±σi, the singular values σi of
the matrix A. Therefore, any guarantee of positive- or negative-definiteness of the
matrix A is lost. This is apparent by rewriting H as its eigendecomposition using
the singular value decomposition (SVD) of A:

0 A
A† 0

= 0 U V †

V U † 0
= 1 2

U −U
V V

0
0 −

U † V †

−U † V †

Pauli Basis and Decomposition

One may always implement an oracle for a matrix A ∈ C2n×2 n by decomposing
A in the Pauli basis. First, we note that any Hermitian matrix A ∈ C2× 2 may be
represented as a linear combination of Pauli matrices, denoted as σx = X , σy =
Y , σz = Z, and σI = I , where X , Y , Z and I are single-qubit gates as shown in
Table 8, as

A = α1σI + α2σx + α3σy + α 4σz

where αi ∈ C. This can be extended to a general matrix A ∈ C2 n as the sum

A =
1

2n i1,i2,...,in
αi1,i2,...,in σi1 ⊗ σi2 ⊗ . . . ⊗ σin

where αi1,i2,...,in ∈ C are the coefficients of A in the Pauli basis and σij ∈
{I , X , Y , Z} are the identity and Pauli matrices. The coefficients αi1,i2,...,in can be
computed as

αi1,i2,...,in = Tr A σi1 ⊗ σi2 ⊗ . . . ⊗ σin

where Tr(·) is the trace of a matrix, and denotes the Hadamard product (element-
wise multiplication) of the matrix entries.

A term of the form σi1 ⊗ σi2 ⊗ . . . ⊗ σin is often referred to as a Pauli string
and written as σi1 σi2 . . . σ in .

118 13 Access Models and Data Representation

Fig. 13.1 Growth in the number of Pauli terms for a sparse matrix

The linear combination of unitaries (LCU) subroutine, described in Chap. 22,
Linear Combination of unitaries, can be used to implement a linear combination
of Pauli basis terms [9]. In fact, LCU implementations produce a block-encoded
oracle [2, 5]. Although d Pauli basis terms produce at most a d -sparse matrix, i.e.,
a matrix with at most d non-zero entries in any row or column, a d -sparse matrix
in general does not correspond to at most d Pauli basis terms [7]. We provide as
an example a code below to decompose the Laplacian matrix into its Pauli basis
and show the growth of the number of terms with N in Fig. 13.1. On the contrary,
it is known that a Laplacian operator with various boundary conditions can be
decomposed into O(1) unitaries with O n2 gates [15] instead of N = O(2n)
gates:

#!/usr/bin/python3

from itertools import product

import numpy as np

from qiskit.quantum_info import Operator

from qiskit.circuit import library

import matplotlib.pyplot as plt

def pad_matrix(matrix):

Pad with 0 to make square matrix

Pauli Basis and Decomposition 119

max_shape = max(matrix.shape[0], matrix.shape [1])

deficiency = int(np.power(2,np.ceil(np.log2(max_shape))) - max_

shape)

if matrix.shape[0] != matrix.shape [1]:

if matrix.shape[0] > matrix.shape [1]:

pad_width = [(0, 0), (0, matrix.shape[0] - matrix.shape [1])]

else:

pad_width = [(0, matrix.shape [1] - matrix.shape[0]), (0, 0)]

matrix = np.pad(matrix, pad_width)
matrix = np.pad(matrix,[(0,deficiency),(0,deficiency)])

return matrix

def decompose_pauli(matrix):

matrix = pad_matrix(matrix)
matrix_len = matrix.shape[0]
nqubits = int(np.log2(matrix_len))

pauli = {
’x’: Operator(library.XGate().to_matrix()),

’y’: Operator(library.YGate().to_matrix()),

’z’: Operator(library.ZGate().to_matrix()),

’i’: Operator(library.IGate().to_matrix())

}

decomposition = {}
for permutation in product(*[list(pauli.keys())]*nqubits):

permutation = "".join(permutation)
base_matrix = pauli[permutation[0]]
for idx in range(1, len(permutation)):

base_matrix = base_matrix.tensor(pauli[permutation[idx]])
decomposition_component= np.trace(np.dot(base_matrix, matrix)) /

matrix_len

if 0!=decomposition_component:

decomposition[permutation] = decomposition_component
return decomposition

max_n = 8
N = [2**n for n in range(1,max_n)]

sparsity = [len(decompose_pauli(2*np.eye(2**n)
- np.diag(np.ones(2**n-1),-1)

- np.diag(np.ones(2**n-1),1))) for n in range(1,max_n)]

plt.plot(N,sparsity)

120 13 Access Models and Data Representation

plt.xlabel(’N’)

plt.ylabel(’Pauli Terms’)

plt.title(’Sparsity in Pauli Basis of NxN Laplacian’)

plt.show()

The implementation of efficient oracles for practically relevant problems is an
active area of research [7, 13]. An example of a circuit using a sparse matrix
access model to encode U ≈ eiA where A =

j
A j is a tridiagonal Toeplitz matrix

decomposed as a sum of 1-sparse matrices Aj that can be found in [8–10] provide
access models for discrete Laplacian matrices.

References

1. M. Weigold, J. Barzen, F. Leymann, M. Salm, Encoding patterns for quantum algorithms. IET
Quantum Commun. 2(4), 141–152 (2021). https://doi.org/10.1049/qtc2.12032

2. L. Lin, Lecture notes on quantum algorithms for scientific computation (2022). Preprint at
arXiv 2201.08309. https://doi.org/10.48550/ARXIV.2201.08309

3. IEEE Standard for Floating-Point Arithmetic (2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

4. A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103(15), 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

5. S. Chakraborty, A. Gilyén, S. Jeffery, The power of block-encoded matrix powers: improved
regression techniques via faster Hamiltonian simulation, in Leibniz International Proceedings
in Informatics, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, pp. 33:1–33:14 (2019).
https://doi.org/10.4230/LIPICS.ICALP.2019.33

6. J.M. Martyn, Z.M. Rossi, A.K. Tan, I.L. Chuang, Grand unification of quantum algorithms.
PRX Quantum 2(4), 040203 (2021). https://doi.org/10.1103/PRXQuantum.2.040203

7. D. Camps, L. Lin, R. Van Beeumen, C. Yang, Explicit quantum circuits for block encodings
of certain sparse matrices (2022). Preprint at https://doi.org/10.48550/ARXIV.2203.10236

8. A.C. Vazquez, Quantum algorithma for solving tri-diagonal linear systems of equations. ETH
Zurich (2018). http://www.sam.math.ethz.ch/~hiptmair/StudentProjects/CarreraVazquez.Alm
udena/MScThesis.pdf

9. E. Cappanera, Variational quantum linear solver for finite element problems: a Poisson equa-
tion test case. TU Delft (2021). http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-bab
b1b298d87

10. C.J. Trahan, M. Loveland, N. Davis, E. Ellison, A variational quantum linear solver applica-
tion to discrete finite-element methods. Entropy 25(4), 580 (2023). https://doi.org/10.3390/e25
040580

11. S. Chakraborty, A. Morolia, A. Peduri, Quantum regularized least squares. Quantum 7, 988
(2023). https://doi.org/10.22331/q-2023-04-27-988

12. A. Gilyén, Y. Su, G.H. Low, N. Wiebe, Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (ACM, Phoenix AZ USA, 2019), pp. 193–
204. https://doi.org/10.1145/3313276.3316366

13. D. Camps, R. Van Beeumen, Approximate quantum circuit synthesis using block encodings.
Phys. Rev. A 102(5), 052411 (2020). https://doi.org/10.1103/PhysRevA.102.052411

14. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Exponential improvement in
precision for simulating sparse Hamiltonians, in Proceedings of the Forty-Sixth Annual ACM

https://doi.org/10.1049/qtc2.12032
https://doi.org/10.48550/ARXIV.2201.08309
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.48550/ARXIV.2203.10236
http://www.sam.math.ethz.ch/~hiptmair/StudentProjects/CarreraVazquez.Almudena/MScThesis.pdf
http://www.sam.math.ethz.ch/~hiptmair/StudentProjects/CarreraVazquez.Almudena/MScThesis.pdf
http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-babb1b298d87
http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-babb1b298d87
https://doi.org/10.3390/e25040580
https://doi.org/10.3390/e25040580
https://doi.org/10.22331/q-2023-04-27-988
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.1103/PhysRevA.102.052411

References 121

Symposium on Theory of Computing, in STOC ’14 (Association for Computing Machinery,
New York, NY, USA, 2014), pp. 283–292. https://doi.org/10.1145/2591796.2591854

15. O.M. Raisuddin, S. De, qRLS: quantum relaxation for linear systems in finite element analysis.
Eng. Comput. (2024). https://doi.org/10.1007/s00366-024-01975-3

https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1007/s00366-024-01975-3

14Limitations of Quantum Computers

Quantum physics places some fundamental limits on possible operations using
quantum computing. A well-known limitation is the no-cloning theorem [1], which
states that an arbitrary quantum state cannot be used to make an exact, independent
copy of itself. More precisely, the map U |φ ψ eiα|ψ ψ is not possible in
general for arbitrary |ψ C

n, |φ C
n where U ∈ C2 n.

The no-deletion theorem complements the no-cloning theorem, which prohibits
information in a quantum state from being erased (using unitary operations). Note
that imperfect copies are still possible to create, with known bounds on the error
[2–4], or perfect copies can be made if the quantum state is fully known.

The normalization of a state and the periodicity of phase can also be considered
limitations on the state. All gate operations are unitary and linear. To apply non-
unitary and nonlinear operations, a projection onto a subspace of the overall linear
space must be considered. This is the central idea behind block-encoding. This
property is exploited in various quantum computing algorithms, at the expense of
ancilla qubits and a non-zero probability of failure [5].

Amplifying the probability of a desirable quantum state among a superposition
of undesirable states can also pose a challenging limitation. If the amplitude of
the desired state is exponentially small, the probability of obtaining the desired
state cannot be boosted without an exponential overhead [6]. This is known as the
post-selection problem [7].

Getting data in and out of a quantum register is also a challenging problem. I/O
is expensive on quantum computers: preparing or reading out an arbitrary quantum
state scales as O(2n). Furthermore, reading out a quantum state with the phases
requires quantum state tomography [8]. The quantum version of random-access
memory, QRAM, has been proposed to access and store classical data on quantum
computers efficiently and is an active area of research [9].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_14

123

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_14&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_14

124 14 Limitations of Quantum Computers

Some problems have been proven to exhibit no quantum speedup compared
to classical computing. A well-known result is the quantum no-fast-forwarding
theorem [10] which states that the optimal scaling for an arbitrary Hamiltonian
simulation for time T is O(T), in the worst case. The standard proxy for this
proof is the parity problem: given oracle access to a string of N bits, comput-
ing the parity classically requires N queries, while the optimal quantum algorithm
achieves no better than N /2 queries [11]. Thus, no exponential or even superpoly-
nomial quantum advantage is possible for this task. However, for specific classes
of Hamiltonians—such as certain positive-definite or structured systems, sublinear
time evolution via fast-forwarding is possible [5].

Computing expectation values of observables is a fundamental subroutine in
many quantum algorithms. Given a quantum state |ψ and an observable O, the
goal is to estimate Oψ ψ |O|ψ to within additive precision . In general, the
number of measurements required to achieve standard deviation ϵ scales O 1 2 ,
due to statistical sampling. However, using quantum phase estimation or related
techniques, this can be improved to the so-called Heisenberg limit, where the cost
scales as O(1).

Despite these limitations, there is potential for quantum computing to make an
impact on scientific computation and engineering problems. Classical computers
and algorithms are simply not capable of storing and processing large quantum
simulations, making quantum computers the only viable option for general quan-
tum simulation problems [12] despite the no-fast-forwarding theorem. Algorithms
typically need to be modified to be amenable to quantum computing. For example,
[13] uses a Carleman linearization of a nonlinear ordinary differential equation to
obtain an exponential speedup in the number of unknowns, and [14] presents a
novel data encoding scheme for the efficient implementation of a quantum lattice
Boltzmann method.

There exist many other no-go theorems for quantum computing. It is important
to be mindful of these results when developing algorithms to remain within the
confines of what is physically computable, since any computer we can build must
follow the laws of physics.

References

1. W.K. Wootters, W.H. Zurek, A single quantum cannot be cloned. Nature 299(5886), 802–803
(1982). https://doi.org/10.1038/299802a0

2. V. Bužek, M. Hillery, Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3),
1844–1852 (1996). https://doi.org/10.1103/PhysRevA.54.1844

3. V. Bužek, M. Hillery, Universal optimal cloning of arbitrary quantum states: from qubits to
quantum registers. Phys. Rev. Lett. 81(22), 5003–5006 (1998). https://doi.org/10.1103/PhysRe
vLett.81.5003

4. V. Buzek, M. Hillery, Quantum cloning. Phys. World 14(11), 25–30 (2001). https://doi.org/10.
1088/2058-7058/14/11/28

5. D. An, J.P. Liu, D. Wang, Q. Zhao, A theory of quantum differential equation solvers: lim-
itations and fast-forwarding (2022). Preprint at arXiv https://doi.org/10.48550/ARXIV.2211.
05246.

https://doi.org/10.1038/299802a0
https://doi.org/10.1103/PhysRevA.54.1844
https://doi.org/10.1103/PhysRevLett.81.5003
https://doi.org/10.1103/PhysRevLett.81.5003
https://doi.org/10.1088/2058-7058/14/11/28
https://doi.org/10.1088/2058-7058/14/11/28
https://doi.org/10.48550/ARXIV.2211.05246
https://doi.org/10.48550/ARXIV.2211.05246

References 125

6. G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation,
in Contemporary Mathematics, vol. 305, eds. by S.J. Lomonaco, H.E. Brandt (Providence,
Rhode Island: American Mathematical Society, 2002), pp. 53–74. https://doi.org/10.1090/
conm/305/05215

7. S. Aaronson, Quantum computing, postselection, and probabilistic polynomial-time (2004).
Preprint at arXiv arXiv:quant-ph/0412187

8. M. Cramer et al., Efficient quantum state tomography. Nat. Commun. 1(1), 149 (2010). https://
doi.org/10.1038/ncomms1147

9. K. Phalak, A. Chatterjee, S. Ghosh, Quantum random access memory for dummies (2023).
Preprint at arXiv https://doi.org/10.48550/ARXIV.2305.01178.

10. D.W. Berry, G. Ahokas, R. Cleve, B.C. Sanders, Efficient quantum algorithms for simulating
sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007). https://doi.org/10.1007/
s00220-006-0150-x

11. E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, Limit on the speed of quantum computation
in determining parity. Phys. Rev. Lett. 81(24), 5442–5444 (1998). https://doi.org/10.1103/Phy
sRevLett.81.5442

12. R.P. Feynman, Quantum mechanical computers. Found. Phys. 16(6), 507–531 (1986). https://
doi.org/10.1007/BF01886518

13. J.P. Liu, H.Ø. Kolden, H.K. Krovi, N.F. Loureiro, K. Trivisa, A.M. Childs, Efficient quan-
tum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci. U.S.A.
118(35), e2026805118 (2021). https://doi.org/10.1073/pnas.2026805118

14. M.A. Schalkers, M. Möller, On the importance of data encoding in quantum Boltzmann meth-
ods (2023). Preprint at arXiv arXiv:2302.05305. Accessed 07 Nov 2023

https://doi.org/10.1090/conm/305/05215
https://doi.org/10.1090/conm/305/05215
http://arxiv.org/abs/quant-ph/0412187
https://doi.org/10.1038/ncomms1147
https://doi.org/10.1038/ncomms1147
https://doi.org/10.48550/ARXIV.2305.01178
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1103/PhysRevLett.81.5442
https://doi.org/10.1007/BF01886518
https://doi.org/10.1007/BF01886518
https://doi.org/10.1073/pnas.2026805118
http://arxiv.org/abs/2302.05305

15Simon’s, Deutsch–Jozsa,
and Bernstein–Vazirani Algorithms

In this chapter, we introduce three abstract computational problems to demonstrate
a clear advantage of quantum computers over classical computers in a black-box
setting.

Although these algorithms do not have any known applied utility, they distin-
guish the complexity classes of quantum computers. At the end of this chapter, we
will touch upon the Hidden subgroup problem, demonstrating how it is a stencil
for exponential quantum speedups with an example.

In this chapter, we will make extensive use of the following identity to represent
Hadamard gates on n qubits:

H ⊗n =
x∈{0,1}n

|ψx x |

|ψx
1 √
2n x∈{0,1}n

(−1)x·y|y

where x · y is a binary inner product x · y = x0y0 + x1y1 + . . . + xn−1yn−1.
Applying this identity to a basis state |i yields

H ⊗n|i = 2− n
2
2n−1

j=0
(−1)i·j|j

Deutsch–Jozsa Algorithm

The Deutsch–Jozsa algorithm [1] demonstrates an exponential speedup over
classical computing. The computational problem to be solved is defined as follows:

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_15

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_15&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_15

128 15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms

Given a black-box procedure (a.k.a. oracle) that implements a function mapping,
a binary string of length n to a Boolean value

f : {0, 1}n → {0 , 1}

s.t. f is known to be constant:

f (b) = 1 or f (b) = 0 ∀ b ∈ { 0, 1}n

or balanced:

f (b) = 0 ∀ b1
1 ∀ b2

where b1 ∩ b2 = ∅, b1 ∪ b2 = {0, 1 }n, and |b1| = |b2| = 2n−1.
Determine whether f is constant or balanced.
On a classical computer, this algorithm requires 2n−1+1 evaluations of f (oracle

queries) in the worst case.
A quantum oracle for f requires it to be reversible. As explained in Chap. 12,

Classical and Reversible Computation, we can assume access to an oracle of the
form shown in Fig. 15.1.

To solve this problem using a quantum computer, we take advantage of quantum
parallelism by preparing a superposition of inputs. The problem can be solved by
executing the following circuit in Fig. 15.2.

There are several methods to derive the proof of this algorithm. In the proof
that follows, we use an orthogonality argument. Tracing the steps of this circuit:

|ψ1 I⊗n ⊗ (HX) |0 ⊗n|0

Fig. 15.1 Quantum oracle
for f

Fig. 15.2 Quantum circuit
for the Deutsch–Jozsa
algorithm

Deutsch–Jozsa Algorithm 129

=
1 √
2
|0 ⊗n (|0 − |1) = |0 ⊗n|0

Note that we have effectively transformed Uf into a phase oracle, i.e.,

Uf |x − = (−1)f (x)|x −

We will now evaluate f for all possible inputs x ∈ {0, 1}n using a superposition
state (using the identity for Hadamard gates provided earlier):

|ψ2 H ⊗n ⊗ I |ψ1 2− n
2
2n−1

i=0
|i −

The quantum oracle Uf is now applied to this superposition of all possible
inputs

|ψ3 2− n
2
2n−1

i=0
(−1)f (i)|i −

Now consider the two cases when f is constant:

f (i) = 1 ∴ (−1)f (i) = −1
0 ∴ (−1)f (i) = 1

∀ i

Therefore, for the constant case, we can equivalently write

|ψ3 (−1)f (0)2− n
2
2n−1

i=0
|i −

which is simply an overall phase. Proceeding further with the constant case,
applying Hadamard gates to the first register now yields

|ψ4 (−1)f (0)|0 ⊗n|−

Therefore, for the constant case, all the bits in the first register must equal
zero. To complete the proof, we now need to show that this does not hold for the
balanced case.

Now let’s return to the state |ψ3

|ψ3 2− n
2
2n−1

i=0
(−1)f (i)|i −

Let’s measure the overlap of this state between the constant and balanced cases,
i.e.,

ψconstant
3 |ψbalanced

3 = (−1)f (0)2− n
2
2n−1

i=0
i −| 2− n

2
2n−1

j=0
(−1)f (j)|j −

130 15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms

= (−1)f (0)2−n 2n−1

i=0
i| 2n−1

j=0
(−1)f (j)|j

= (−1)f (0)2−n 2
n−1

i=0

2n−1

j=0
(−1)f (j) i|j

= (−1)f (0)2−n 2
n−1

j=0
(−1)f (j) j|j

= (−1)f (0)2−n 2
n−1

j=0
(− 1)f (j)

Since f (j) is balanced,
2n−1

j=0
(−1)f (j) = 0. Therefore,

ψconstant
3 |ψbalanced

3 = 0

implying that ψconstant
3 ⊥ ψbalanced

3 .
Since ψconstant

3 is orthogonal to ψbalanced
3 , they will remain orthogonal if any

unitary transformation is applied to both states, i.e.,

U ψconstant
3 ⊥U ψbalanced

3 ∀ U ∈ U 2 n

Since the transformation from |ψ3 |ψ4 is unitary, i.e., H ⊗n ⊗ I ,

ψconstant
4 ⊥ ψbalanced

4

Since we have already established that the state ψconstant
4 = |0 ⊗n|− up to an

overall phase:

|0 ⊗n⊥ ψbalanced
4

therefore, for the balanced case, a measurement of the first register cannot yield
all zeros.

To summarize, executing the circuit shown in Fig. 15.1 and measuring the first
register solves the Deutsch–Jozsa problem. Measuring any qubit in a non-zero state
indicates that the function is balanced, and measuring all qubits in the first register
in the zero state indicates that the function is constant.

Since this procedure requires only one query to an oracle, this demonstrates an
exponential improvement in query complexity over any classical method for this
problem.

Bernstein–Vazirani Problem 131

Bernstein–Vazirani Problem

The Bernstein–Vazirani algorithm [2] is designed to discover a string hidden in
a function. The Bernstein–Vazirani algorithm demonstrates a linear (polynomial)
speedup over classical query complexity.

Problem statement:
Given f : {0, 1}n → {0, 1} and a secret string s ∈ {0, 1 }n, f (x) =

parity(AND(x, s)). Determine s.
f (x) can alternatively be defined as a bitwise dot product between x and s

modulo 2:

f (x) = x · s = x0s0 ⊕ x1s1 ⊕ . . . ⊕ xn−1sn−1 = mod 2
n−1

i=0
xisi

s can be determined classically one bit at a time by querying f using the following
strings:

si = f bin 2i ∀ i ∈ [0, n − 1]

which requires n queries to a classical oracle of f to determine all bits of s.
Given access to f as a quantum oracle Uf , the string s may be determined using

one query to Uf , indicating a linear speedup over classical query complexity.
To determine s using a quantum procedure similar to the Deutsch–Jozsa

problem, we assume access to a quantum oracle of the form:

Uf |x b x b ⊕ f (x) .

and using the same technique employed for the Deutsch–Jozsa algorithm, we
transform this oracle into a phase oracle by choosing |b :

Uf |x (−1)f (x)|x

The circuit for solving this problem is similar to that for the Deutsch–Jozsa
problem and is shown in Fig. 15.3.

Tracing this algorithm step-by-step, we get

|ψ1 I⊗n ⊗ HX |0 ⊗n|0 = |0 ⊗n|−

Fig. 15.3 Quantum circuit to
solve the Bernstein–Vazirani
problem

132 15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms

|ψ2 2− n
2
2n−1

i=0
|i −

|ψ3 2− n
2
2n−1

i=0
(−1)f (i)|i −

By definition of f (i) we get

|ψ3 2− n
2
2n−1

i=0
(−1)i·s|i −

In the next step we use the identity:

H ⊗n|i = 2− n
2
2n−1

j=0
(−1)i·j|j

where |i , |j ∈ C2n are standard basis states.
Applying the final Hadamard gates, we get

|ψ4 2− n
2
2n−1

i=0
(−1)i·s H ⊗n|i |−

= 2 −
n
2
2n−1

i=0
(−1)i·s 2− n

2
2n−1

j=0
(−1)i·j|j |−

= 2−n 2
n−1

i=0

2n−1

j=0
(−1)i·s (−1)i·j|j −

We now use the following identities:

(−1)i·s (−1)i·j = (−1)(i·s)⊕(i·j) = (−1)i·(s ⊕j)

where ⊕ indicates a bitwise XOR operation, to arrive at

|ψ4 2−n 2
n−1

i=0

2n−1

j=0
(−1)i·(s⊕j)|j −

Now we can compute the probability amplitude of the state |s − by choosing
j = s. First, we note that s ⊕ s = 0. Furthermore, i · 0 = 0. Therefore, we can now
simplify

|ψ4 2−n 2
n−1

i=0
(−1)0|s −

|ψ4 2−n 2
n−1

i=0
|s −

|ψ4 |s −
and see that the probability amplitude of |s is 1. Therefore, using a completeness
argument, we know that all other states must have a probability amplitude of 0.
We can conclude that measuring the first register will directly yield the string s.

Simon’s Problem 133

Simon’s Problem

Simon’s problem [3] is similar to the Bernstein–Vazirani problem; however, it
demonstrates an exponential speedup over classical computing. There are several
variants of Simon’s problem, stated as follows. We will attempt to combine all
these (equivalent variants).

We provide two equivalent statements of the problem as Variant 1a and Variant
2a. If the problem asks for an additional output, we provide Variant 1b and Variant
2b as equivalent extensions of the problem.

Variant 1a (decision problem):
Given f : {0, 1}n → {0, 1}n and s, x, y ∈ {0, 1}n s.t. ∀ x, y
f (x) = f (y) iff y = x ⊕ s.
Determine whether s = 0 n or s 0n.
Variant 1b:
Given s 0n, find s.
Variant 2a (decision problem):
Given f : {0, 1}n → {0, 1}n and s, x, y ∈ {0, 1}n s.t. ∀ x, y
f (x) = f (y) iff y = x ⊕ s.
Determine whether f is a 1 − 1 or 2 − 1 function.
Variant 2b:
If f is a 2 − 1 function, determine the secret string s.
One deterministic classical algorithm to solve Simon’s problem is to query f (x)

for at most 2n−1 distinct values of x ∈ {0, 1 }n. If there is a “collision,” i.e., f (x) =
f (y), it will necessarily be apparent by comparing all the computed strings f (x),
solving Variants 1a and 2a of the problem.

Variants 1b and 2b can also be solved by simply using the colliding pair of
inputs x, y and computing x ⊕ y = x ⊕ x ⊕ s = 0n ⊕ s = s. Therefore, the worst-
case scenario of this algorithm is 2n−1 + 1 queries of f (x) to solve all variants of
the problem.

This problem may also be solved using a probabilistic classical algorithm utiliz-
ing the “Birthday Paradox.” The lower bound for a randomized classical algorithm

requires O 2
n
2 queries of f (x). In either case, the classical query complexity is

known to scale exponentially with the length of the string.
If f (x) is provided as a quantum oracle Uf of the form

Uf |x 0 ⊗n = |x f (x)

this problem may be solved with O(n) queries to Uf and O n3 classical post-
processing steps, indicating an exponential speedup. The quantum circuit for
solving this problem is shown in Fig. 15.4.

Let’s trace the quantum states of this algorithm as labeled in Fig. 15.4. Using
the identity for the Hadamard gate

|ψ1 (H ⊗ I)|0 ⊗n|0 ⊗n = 2 −
n
2
2n−1

i=0
|i 0 ⊗n

134 15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms

Fig. 15.4 Quantum circuit
for solving Simon’s problem

Using the definition of Uf Uf

|ψ2 Uf 2
− n

2
2n−1

i=0
|i 0 ⊗n = 2− n

2
2n−1

i=0
|i f (i)

At this point, let’s analyze |ψ2 before proceeding further. Consider a mea-
surement of the second register. Measuring a bitstring f (j) in the second register
implies that the overall system can be in either of the following two states:

1 √
2
(|j + |j ⊕ s)|f (j) if s 0n

|j f (j) if s = 0n

Let’s proceed with the case s 0n. We may now rewrite |ψ2 as

|ψ2 2− n+1
2

2n−1

i=0
(|i + |i ⊕ s)|f (i)

We now apply the final Hadamard gates and use the identity

H ⊗n|i = 2− n
2
2n−1

j=0
(−1)i·j|j

We can now simply drop the second register as a “don’t care” term and apply
the Hadamard gates to obtain

H ⊗n ⊗ I 2− n+ 1
2

2n−1

i=0
(|i + |i ⊕ s)|f (i)

= 2− n+1
2

2n−1

i=0
2− n

2
2n−1

j=0
(−1)i·j|j + 2− n

2
2n−1

j=0
(−1)(i⊕s)·j|j |f (i)

= 2− n +1
2

2n−1

i=0
2− n

2
2n−1

j=0
(−1)i·j|j + 2− n

2
2n−1

j=0
(−1)i·j (−1)s·j|j |f (i)

= 2− 2n +1
2

2n−1

i=0

2n−1

j=0
(−1)i·j 1 + (−1)s·j |j f (i)

Noting that 1 + (−1)s·j 0 only if s · j = 0, measuring the first register yields
|j s.t. s · j = 0. This does not directly reveal s. However, by sampling n−1 linearly

Hidden Subgroup Problem 135

independent samples
0
j,

1
j, . . .

n−2
j we can construct a homogeneous linear system

problem of the form

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
j
0

0
j
1

· · ·
0
j

n−1
1
j
0

1
j
1

· · ·
1
j

n−1
...

...
. . .

...
n−2
j0

n−2
j1 · · ·

n−2
jn−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

s0
s1
...

sn−1

⎞

⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝
0
0
...

0

⎞
⎟⎟⎟⎠

The number of bitstrings that need to be sampled to obtain such linearly inde-
pendent bitstrings is O(n). This linear system can be solved for a non-trivial
solution using O n3 floating-point operations on a classical computer to reveal
the string s.

Therefore, the overall complexity of Simon’s algorithm is O(n) quantum oracle
access and O n3 classical computing operations, leading to a polynomial time
solution. This demonstrates an exponential improvement in query complexity over
classical methods for solving Simon’s problem.

Hidden Subgroup Problem

We note that Simon’s problem is an instance of a very particular type of problem
known as an Abelian Hidden Subgroup Problem (HSP). We define the Abelian
HSP below.

Consider a finite group G : G × G → G and a subgroup H ⊂ G, i.e., H : H ×
H → H with a group operation . The group operation is Abelian (commutative)
if gi gj = gj gi ∀ gi, gj ∈ G.

Consider also a function on G as f : G → A, where A is a finite set. f is said
to hide a subgroup H if

f (gi) = f gj iff gi H = gj H .
Abelian Hidden Subgroup Problem: Given oracle access to f and the members

of a group G, find the subgroup H that is hidden by an Abelian group operation .
We can now draw parallels to see how the problem is an instance of the HSP.

The group G is formed by bitstrings {0, 1} n. The group operation ⊕ is Abelian.
The finite set A also happens to be {0, 1}n . The hidden subgroup H is 0⊗n, s :

gi ⊕ H = gi ⊕ 0⊗n, gi ⊕ s = {gi, gi ⊕ s} = {gi, s ⊕ gi}

Evaluating f on this left coset or right coset {gi, gi ⊕ s} = {gi, s ⊕ gi} yields

f (gi) = f (gi ⊕ s)

which is the definition of f , i.e., f does indeed hide H by definition.

136 15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms

Quantum computers are known to have an exponential speedup (polynomial
time solution) over classical problems for the Abelian HSP. Whether the non-
Abelian version of this problem exhibits a similar speedup is an open problem. A
prominent application is Shor’s algorithm [4], which reduces integer factorization
and discrete logarithm to instances of the Abelian HSP over cyclic groups. This
approach yields an exponential quantum speedup for these problems compared to
all known classical algorithms.

The three problems outlined in this chapter demonstrate the fundamentally dif-
ferent nature of quantum computing in contrast to classical computing. Although
these problems themselves do not solve any applied problem in computing, they
foreshadow the potential speedups that can be enabled by quantum computing and
provide a separation of complexity classes for classical and quantum computers.

References

1. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439(1907), 553–
558 (1992). https://doi.org/10.1098/rspa.1992.0167

2. E. Bernstein, U. Vazirani, Quantum complexity theory. SIAM J. Comput.26(5), 1411–1473
(1997). https://doi.org/10.1137/S0097539796300921

3. D.R. Simon, On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483
(1997). https://doi.org/10.1137/S0097539796298637

4. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in Proceed-
ings 35th Annual Symposium on Foundations of Computer Science (IEEE Computer Society
Press, Santa Fe, NM, USA, 1994), pp. 124–134. https://doi.org/10.1109/SFCS.1994.365700

https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1137/S0097539796298637
https://doi.org/10.1109/SFCS.1994.365700

Part IV

Programming Quantum Computers

Having developed a foundational understanding of quantum computation and its
theoretical building blocks, we now turn to the practical task of programming
quantum computers. This part focuses on bridging theory and implementation,
equipping readers with the tools to construct and run quantum circuits using a
modern software framework.

Chapter 16, “The Quantum Computing Stack”, introduces the conceptual struc-
ture shown in Fig. 63. It discusses hardware-level control, device-specific gate
sets, dynamic circuit instructions, and the role of quantum assembly languages. It
also provides an overview of error suppression, mitigation, and correction as they
appear across the stack.

Chapter 17, “Libraries for Quantum Computing”, surveys widely used frame-
works and libraries for quantum software development. The chapter includes tools
for algorithm prototyping, simulation, classical preprocessing, and cloud-based
execution, with an emphasis on Qiskit and supporting libraries.

https://doi.org/10.1007/978-3-032-03325-3_16
https://doi.org/10.1007/978-3-032-03325-3_17

16The Quantum Computing Stack

In this chapter, we provide a high-level overview of the programming stack for
quantum computing, with examples of various libraries and implementations and
brief expositions of strategies for dealing with noise and errors. We first provide
an overview of the quantum computer programming stack for gate-based quantum
computers in Fig. 16.1. We then explain the components of the stack and their
relations and techniques to manage errors and noise in quantum hardware.

We start our discussion from the bottom of the stack and move upwards.
The hardware-level controls are specific to the particular implementation of the
quantum computers. For superconducting qubits, this is typically the control and
shaping of microwave pulses to apply quantum gates and perform measurements
[1]. For a photonic quantum computer, this can be an implementation of a phase
shifter or a beam splitter [2]. This typically requires detailed knowledge of the
physics of hardware implementation. Hardware vendors may provide access to
these low-level controls. Quantum circuits allow the abstraction of these details up
to at least the hardware gate set provided by vendors.

The device-specific code encompasses the hardware gate set, measurements,
and dynamic circuit instructions. Measurements may either be raw samples or
expectation values constructed from an ensemble of Pauli strings. The hard-
ware gate set combined with measurements may be considered as the classical
equivalent of an instruction set.

Dynamic circuit instructions are quantum instructions conditioned on qubit
measurements (classical) within a quantum circuit that are executed at circuit run-
time. As an example, using dynamic circuits, if a qubit is measured as 0 during
circuit execution, certain gates may be applied; otherwise, measuring 1 leads to
other gates being applied. Since quantum devices have short coherence times,
dynamic circuit instructions are typically executed on hardware close to the qubits
to minimize execution time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_16

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_16&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_16

140 16 The Quantum Computing Stack

Fig. 16.1 Visualization of the quantum computing stack

Dynamic circuits can allow shortening of quantum circuits in various cases,
with two examples being [3, 4]. Since these are more advanced features, they are
outside the scope of this text. Error-correction codes rely on dynamic circuits to
detect and correct errors on-the-fly.

A quantum assembly language (QASM) is a bridge between device-specific
code and the hardware-level implementation of the circuit. OpenQASM [5],
cQASM [6], and Jaqal [7] are well-known examples of QASMs. OpenQASM is
an open-source language developed by researchers at IBM and the most widely
used one in libraries for quantum computing.

A code describing a quantum circuit may be defined using an arbitrary set
of gates, which can then be transpiled to code for a target device. In addition
to converting to the gate set of the device, the topology of the device must also
be considered since logical qubits in the quantum circuit need to be mapped to
physical qubits (or a collection of physical qubits corresponding to a logical qubit)
in the device. This process is typically executed by a high-level language or library
and is referred to as a layout and routing for the tasks of mapping logical qubits
to physical qubits, followed by routing operations such as SWAP gates to respect
hardware connectivity constraints.

Current quantum devices are in the Noisy Intermediate-Scale Quantum (NISQ)
or “pre-fault-tolerant” era. The error rates and coherence times do not meet the
threshold required for quantum error correction, and the total number of physical
qubits is modest compared to the requirements of error-correcting codes. Quantum
error correction is necessary for building fault-tolerant quantum computers which
can execute arbitrary quantum algorithms. Details of a few contemporary quantum
computing systems with published specifications are listed in Table 16.1. However,
we emphasize that such specifications are not fully indicative of the capabilities of
the device. As an example, trapped ion qubits have much longer coherence times
compared to superconducting chips but the execution times for gates are typically

Error Suppression 141

Table 16.1 Published specifications of gate-based quantum computing hardware developed by
major companies

System Qubit count Coherence time (T1) Coherence time (T2)

IBM Heron [8] 133–156 ~200 µs ~ 100 µs
Google Willow [9] 105 ~68–100 µs –

IonQ Forte [10] 30–36 ~10–100 s ~1 s

Quantinuum H2-1 [11] 56 >60 s ~4 s

longer too. As such, characterizing the performance of quantum computing sys-
tems is a nuanced and rapidly evolving subject. For present-day practitioners the
critical metric is the maximum 2-qubit gate depth that can be executed on the
device without significant error and noise accumulation.

Finally, we note that quantum error correction, mitigation, and suppression can
be part of various levels of the quantum computing stack. For classical comput-
ers, error correction and fault-tolerance typically occur at the bit level, e.g., voting
circuits for logic, redundancy for memory, and parity for communications. In con-
trast, present-day strategies for dealing with errors for quantum computing range
from preprocessing steps of the algorithm to hardware-level controls of individ-
ual qubits [12]. Error mitigation and suppression along with other techniques like
reordering or optimizing circuits can occur at the quantum circuit or device-specific
code levels [13]. Control hardware typically needs to be calibrated periodically to
counteract noise and fabrication defects. While all these modalities are vast sub-
jects of research, we provide here a succinct typology to highlight the differences
between the three major categories and provide examples of common techniques.

Error Suppression

Quantum error suppression generally refers to techniques for suppressing or reduc-
ing the accumulation of errors during the execution of a quantum circuit. While
these techniques do not perform error correction, they are an indispensable tool to
maximize the performance of NISQ devices. Some commonly used techniques
with minimal overhead are dynamical decoupling, Pauli twirling, and twirled
readout.

Dynamical decoupling inserts periodic pulses (and their inverse) into idle por-
tions of a quantum circuit to decouple the quantum state from the environment.
While this has no net effect in an ideal setting, in the presence of noise these
sequences cancel out coupling with the environment in an average sense. This
reduces errors and increases the coherence time of qubits. One may experiment
with a variety of dynamical decoupling sequences to identify a sequence that works
well for the circuit of interest.

Pauli twirling inserts pseudo-random single-qubit Pauli gates into a circuit to
convert coherent errors (systematic, unitary errors) into stochastic Pauli errors,

142 16 The Quantum Computing Stack

which are easier to analyze and mitigate. Pauli twirling can also be applied to
two-qubit gates.

Twirled readout modifies the measurement process by flipping a qubit before
measurement and then applying a classical NOT operation to the measured result.
This effectively averages out certain types of readout bias. Twirling operations are
typically inserted randomly in a circuit.

Error Mitigation

Quantum error mitigation techniques are used to improve expectation value esti-
mates by applying a combination of quantum circuit transformations and classical
post-processing. The most commonly used technique for error mitigation is zero-
noise extrapolation (ZNE). The noise in a quantum circuit is “amplified,” and curve
fit is used to extrapolate an expectation value to an amplification factor of zero, i.e.,
zero noise. Various methods can be used to amplify the noise in a circuit. Circuit
folding amplifies noise by applying gates (or an entire circuit without measure-
ments) and their inverse. While circuit folding is a conceptually simple method
to amplify noise, in practice the circuit depth of a folded circuit typically exceeds
the viable circuit depth executable by NISQ hardware. Probabilistic error amplifi-
cation (PEA) is another common technique for amplifying the error and is better
suited for current NISQ hardware. PEA learns the noise in a circuit and amplifies
it by explicitly applying the learned noise model at different amplification levels
in the circuit. Once expectation values are obtained at different noise amplification
levels, a curve fit can be used to extrapolate to an amplification factor of zero.
The choice of curve (e.g., linear or quadratic) to be fit to the pairs of expecta-
tion value and amplification ratio data points is typically chosen heuristically. For
NISQ algorithms, techniques like ZNE are used at the quantum algorithm and pre-
and post-processing levels to reduce the effects of noise on measured observables
[14].

Error Correction

The prevalent method for constructing logical qubits for fault-tolerant quantum
computing is centered around error-correction codes running on a multitude of
physical qubits, which run at the device-specific code level. Error-correction codes
utilize “syndrome” measurements. While direct measurement of a qubit will lead
to the quantum state collapsing to the measured state, a syndrome measurement
can be used to test whether two or more qubits have the same quantum state and
test for errors without destroying the quantum state. By applying a sequence of
syndrome measurements, one may then apply the necessary corrections to restore
the quantum state. The theoretical models for error correction have been confirmed
experimentally in several experiments [15–17].

References 143

While error suppression and error mitigation are useful tools for NISQ devices,
error correction is necessary for fault-tolerant quantum computing. Furthermore,
the overheads for error mitigation scale exponentially in general for various tech-
niques, which is not a scalable approach towards any possible quantum advantage
[18].

Error-corrected, a.k.a. fault-tolerant, quantum computers have not been devel-
oped yet. However, as hardware development is progressing, physical qubits
may still provide useful results. To improve the performance of physical qubits,
error suppression and error mitigation are employed. Error suppression and error
mitigation may broadly be differentiated as techniques to reduce errors before
measurement, and techniques to reduce the impact of errors after measurement.

References

1. Y. Liu, S.J. Srinivasan, D. Hover, S. Zhu, R. McDermott, A.A. Houck, High fidelity read-
out of a transmon qubit using a superconducting low-inductance undulatory galvanometer
microwave amplifier. New J. Phys. 16(11), 113008 (2014). https://doi.org/10.1088/1367-2630/
16/11/113008

2. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Linear optical quan-
tum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007). https://doi.org/
10.1103/RevModPhys.79.135

3. E. Bäumer et al. Efficient long-range entanglement using dynamic circuits. PRX Quantum
5(3), 030339 (2024). https://doi.org/10.1103/PRXQuantum.5.030339

4. I. Moflic, A. Paler, On the constant depth implementation of Pauli exponentials (2024).
Preprint at arXiv arXiv:2408.08265

5. A. Cross et al., OpenQASM 3: A broader and deeper quantum assembly language. ACM Trans.
Quantum Comput. 3(3), 1–50 (2022). https://doi.org/10.1145/3505636

6. N. Khammassi, G.G. Guerreschi, I. Ashraf, J.W. Hogaboam, C.G. Almudever, K. Bertels,
cQASM v1.0: towards a common quantum assembly language (2018). Preprint at arXiv https://
doi.org/10.48550/ARXIV.1805.09607

7. B.C.A. Morrison et al., Just another quantum assembly language (Jaqal), in 2020 IEEE Inter-
national Conference on Quantum Computing and Engineering (QCE) (IEEE, Denver, CO,
USA, 2020), pp. 402–408. https://doi.org/10.1109/QCE49297.2020.00056

8. J. Robledo-Moreno et al., Chemistry beyond exact solutions on a quantum-centric supercom-
puter (2024). Preprint at arXiv arXiv:2405.05068

9. Google Quantum AI and Collaborators et al., Quantum error correction below the surface code
threshold. Nature 638(8052), 920–926 (2025). https://doi.org/10.1038/s41586-024-08449-y

10. J.S. Chen et al., Benchmarking a trapped-ion quantum computer with 30 qubits. Quantum 8,
1516 (2024). https://doi.org/10.22331/q-2024-11-07-1516

11. M. DeCross et al., The computational power of random quantum circuits in arbitrary geome-
tries (2024). Preprint at arXiv arXiv:2406.02501

12. S. Günther, N.A. Petersson, J.L. DuBois, Quantum optimal control for pure-state preparation
using one initial state. AVS Quantum Sci. 3(4), 043801 (2021). https://doi.org/10.1116/5.006
0262

13. Y. Nam, N.J. Ross, Y. Su, A.M. Childs, D. Maslov, Automated optimization of large quantum
circuits with continuous parameters. npj Quantum Inf. 4(1), 23 (2018). https://doi.org/10.1038/
s41534-018-0072-4

https://doi.org/10.1088/1367-2630/16/11/113008
https://doi.org/10.1088/1367-2630/16/11/113008
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/PRXQuantum.5.030339
http://arxiv.org/abs/2408.08265
https://doi.org/10.1145/3505636
https://doi.org/10.48550/ARXIV.1805.09607
https://doi.org/10.48550/ARXIV.1805.09607
https://doi.org/10.1109/QCE49297.2020.00056
https://doi.org/10.1038/s41586-024-08449-y
https://doi.org/10.22331/q-2024-11-07-1516
http://arxiv.org/abs/2406.02501
https://doi.org/10.1116/5.0060262
https://doi.org/10.1116/5.0060262
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4

144 16 The Quantum Computing Stack

14. T. Giurgica-Tiron, Y. Hindy, R. LaRose, A. Mari, W.J. Zeng, Digital zero noise extrapolation
for quantum error mitigation, in 2020 IEEE International Conference on Quantum Comput-
ing and Engineering (QCE) (IEEE, Denver, CO, USA, 2020), pp. 306–316. https://doi.org/10.
1109/QCE49297.2020.00045

15. S. Bravyi, A.W. Cross, J.M. Gambetta, D. Maslov, P. Rall, T.J. Yoder, High-threshold and low-
overhead fault-tolerant quantum memory. Nature 627(8005), 778–782 (2024). https://doi.org/
10.1038/s41586-024-07107-7

16. Google Quantum AI et al., Suppressing quantum errors by scaling a surface code logical qubit.
Nature 614(7949), 676–681 (2023). https://doi.org/10.1038/s41586-022-05434-1

17. Google Quantum AI et al., Exponential suppression of bit or phase errors with cyclic error
correction. Nature 595(7867), 383–387 (2021). https://doi.org/10.1038/s41586-021-03588-y

18. Y. Quek, D. Stilck França, S. Khatri, J.J. Meyer, J. Eisert, Exponentially tighter bounds on lim-
itations of quantum error mitigation. Nat. Phys. 20(10), 1648–1658 (2024). https://doi.org/10.
1038/s41567-024-02536-7

https://doi.org/10.1109/QCE49297.2020.00045
https://doi.org/10.1109/QCE49297.2020.00045
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1038/s41586-024-07107-7
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1038/s41567-024-02536-7
https://doi.org/10.1038/s41567-024-02536-7

17Libraries for Quantum Computing

There are various high-level libraries developed for quantum computing, of which
the vast majority are available in Python 3 and are open source. Currently, the
most advanced and stable library suite is the open-source library Qiskit [1], devel-
oped by IBM. Google’s Cirq is a Python framework designed for NISQ devices,
particularly those based on its Sycamore architecture [2]. While still evolving, it
supports a range of algorithms and simulation tools.

Microsoft has taken a different approach with Q# [3], a domain-specific lan-
guage for quantum computing, tightly integrated with the .NET ecosystem and
optimized for hybrid quantum–classical workflows. Other notable libraries are
Pennylane [4] and Strawberry Fields [5], developed by Xanadu for their pho-
tonic quantum computers, and PyQuil [6] for Rigetti’s superconducting qubit
architecture.

MATLAB has recently introduced a quantum computing toolbox for construct-
ing and simulating simple quantum circuits and simulating or submitting them
to systems available through the cloud. However, it is in a nascent stage and
does not offer the high-level functionality available in the Qiskit, Cirq, or Pen-
nylane libraries. The Berkeley Quantum Synthesis Toolkit (BQSkit), developed
at Lawrence Berkeley National Laboratory, provides powerful tools for optimiz-
ing and synthesizing approximate quantum circuits. TKET is another open-source
quantum software developer tool for building and compiling circuits to run on
simulators or hardware.

Several of the high-level libraries have built-in implementations of algorith-
mic primitives, e.g., the quantum Fourier transform or Trotterization. There are
also additional libraries and wrappers for implementing algorithms in machine
learning and quantum chemistry. TensorFlow Quantum serves as a wrapper that
integrates Cirq with TensorFlow, enabling quantum machine learning and varia-
tional quantum algorithms. The Qiskit ecosystem includes specialized tools for

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_17

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_17&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_17

146 17 Libraries for Quantum Computing

quantum hardware design through the Qiskit Metal library [1] and software pack-
ages for chemistry and quantum physics simulations (Qiskit Nature), numerical
methods (Qiskit Algorithms), and device characterization (Qiskit Experiments).

There are several important libraries for the classical preprocessing steps for
quantum computation. OpenFermion [7], PySCF [8], Qiskit, and Qiskit Nature can
be used for quantum chemistry simulation preprocessing, e.g., for selecting basis
sets for molecular structure calculations or implementations of Jordan–Wigner
[9] or Bravyi–Kitaev [10] transformations. Quantum signal processing algorithms
require a sequence of phase angles to be computed classically. The QSPPACK
[11] and PyQSP [12] libraries are the only libraries for this task as of now, with
QSPPACK providing superior performance and implementations of state-of-the-art
algorithms for phase factor calculations. Since classical preprocessing libraries can
vary widely by application area, it is beyond the scope of this book to provide a
thorough review of these libraries.

Quantum computers are typically accessed through the cloud. Several com-
mercial, academic, and government research groups have made their prototypes
available either directly or through a third party. Notable commercial vendors are
IBM, Google, IonQ, Honeywell, Xanadu, and Rigetti, with Amazon bra-ket and
Microsoft Azure providing third-party cloud access. Quantum hardware testbeds
have been available at Lawrence Berkeley National Laboratory (AQT). Sandia’s
QSCOUT program has concluded, but insights from it continue to inform future
quantum hardware control platforms.

Given Qiskit’s comprehensive support across the quantum computing stack, its
maturity, and its active development community, we adopt Qiskit as the primary
library for programming quantum computers throughout this book.

References

1. Qiskit contributors, Qiskit: An Open-source Framework for Quantum Computing (2023).
https://doi.org/10.5281/ZENODO.2573505

2. Cirq Developers, Cirq (Zenodo, 2023). https://doi.org/10.5281/ZENODO.4062499
3. J. Hooyberghs, Introducing Microsoft Quantum Computing for Developers: Using the Quantum

Development Kit and Q# (Apress, Berkeley, CA, 2022). https://doi.org/10.1007/978-1-4842-
7246-6

4. V. Bergholm et al., PennyLane: automatic differentiation of hybrid quantum-classical compu-
tations (2018). https://doi.org/10.48550/ARXIV.1811.04968

5. N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, C. Weedbrook, Strawberry fields: a
software platform for photonic quantum computing. Quantum 3, 129 (2019). https://doi.org/
10.22331/q-2019-03-11-129

6. P.J. Karalekas et al., PyQuil: Quantum Programming in Python (Zenodo, 2020). https://doi.
org/10.5281/ZENODO.3553165

7. J.R. McClean et al., OpenFermion: the electronic structure package for quantum computers.
Quant. Sci. Technol. 5(3), 034014 (2020). https://doi.org/10.1088/2058-9565/ab8ebc

8. Q. Sun et al., Recent developments in the PySCF program package. J. Chem. Phys. 153(2),
024109 (2020). https://doi.org/10.1063/5.0006074

9. P. Jordan, E. Wigner, Über das Paulische äquivalenzverbot. Z. Physik 47(9–10), 631–651
(1928). https://doi.org/10.1007/BF01331938

https://doi.org/10.5281/ZENODO.2573505
https://doi.org/10.5281/ZENODO.4062499
https://doi.org/10.1007/978-1-4842-7246-6
https://doi.org/10.1007/978-1-4842-7246-6
https://doi.org/10.48550/ARXIV.1811.04968
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.22331/q-2019-03-11-129
https://doi.org/10.5281/ZENODO.3553165
https://doi.org/10.5281/ZENODO.3553165
https://doi.org/10.1088/2058-9565/ab8ebc
https://doi.org/10.1063/5.0006074
https://doi.org/10.1007/BF01331938

References 147

10. S.B. Bravyi, A.Y., Kitaev, Fermionic quantum computation. Ann. Phys. 298(1), 210–226
(2002). https://doi.org/10.1006/aphy.2002.6254

11. Y. Dong, X. Meng, K.B. Whaley, L. Lin, Efficient phase-factor evaluation in quantum sig-
nal processing. Phys. Rev. A 103(4), 042419 (2021). https://doi.org/10.1103/PhysRevA.103.
042419

12. J.M. Martyn, Z.M. Rossi, A.K. Tan, I.L. Chuang, Grand unification of quantum algorithms.
PRX Quant. 2(4), 040203 (2021). https://doi.org/10.1103/PRXQuantum.2.040203

https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.1103/PRXQuantum.2.040203

Part V

Algorithmic Primitives, Subroutines,
and Frameworks

This part introduces a core set of algorithmic building blocks that underpin
many of the most powerful quantum algorithms. These primitives enable quan-
tum speedups for diverse classes of problems, including simulation, optimization,
and machine learning. The chapters focus on both conceptual understanding and
algorithmic structure, with an emphasis on modularity, reusability, and practical
implementation.

Chapter 18, “Phase Kickback”, illustrates how quantum circuits can encode
classical information in the phase of a quantum state, a key mechanism underlying
phase estimation and related techniques.

Chapter 19, “Quantum Fourier Transform”, presents the quantum analog of the
discrete Fourier transform and explains its role in many quantum algorithms, most
notably Shor’s algorithm and quantum phase estimation.

Chapter 20, “Quantum Phase Estimation”, builds on the previous two chapters
to show how quantum algorithms can estimate eigenvalues of unitary operators.

Chapter 21, “Trotterization”, introduces product formulas that approximate
the time evolution of a quantum system—a fundamental technique in quantum
simulation.

Chapter 22, “Linear Combination of Unitaries (LCU)”, generalizes quantum
operations using weighted combinations of unitary operators, enabling implemen-
tation of a broader class of linear transformations.

Chapter 23, “Qubitization and Quantum Signal Processing”, introduces
advanced techniques for operator transformations and polynomial approximations,
which underpin modern simulation and linear algebra algorithms.

Chapter 24, “Amplitude Amplification and Estimation”, introduces the ampli-
tude amplification subroutine and its application toward Quantum Amplitude
Estimation, which are techniques offering quadratic speedups for probabilistic
quantum algorithms.

Chapter 25, “Quantum Monte Carlo”, presents quantum methods for statistical
sampling and expectation estimation, leveraging amplitude estimation for reduced
sample complexity.

Chapter 26, “Matrix-Vector Multiplications and Affine Linear Operations”, dis-
cusses techniques for implementing linear algebraic operations in quantum circuits,
including methods for sequences of matrix-vector operations and affine linear
matrix-vector operations.

https://doi.org/10.1007/978-3-032-03325-3_18
https://doi.org/10.1007/978-3-032-03325-3_19
https://doi.org/10.1007/978-3-032-03325-3_20
https://doi.org/10.1007/978-3-032-03325-3_21
https://doi.org/10.1007/978-3-032-03325-3_22
https://doi.org/10.1007/978-3-032-03325-3_23
https://doi.org/10.1007/978-3-032-03325-3_24
https://doi.org/10.1007/978-3-032-03325-3_25
https://doi.org/10.1007/978-3-032-03325-3_26

150 Part V: Algorithmic Primitives, Subroutines, and Frameworks

These chapters form the algorithmic core that supports the quantum algorithms
introduced in subsequent parts. Each is motivated by practical applications and
illustrated with representative code where appropriate.

18Phase Kickback

Phase kickback is a uniquely quantum phenomenon where the control qubit in
a controlled operation accumulates a phase, whereas the target qubit remains
unchanged. This is remarkably different from classical computing, where the
control bits for logic gates always remain unchanged.

When a controlled gate is applied and the target is in an eigenstate of the
unitary being controlled, the corresponding eigenvalue can be “kicked back” to the
phase of the control qubit [1]. This effect plays a central role in several quantum
subroutines, including quantum phase estimation and the broader quantum signal
processing framework.

Consider a unitary operator U with eigenstates |λi and corresponding eigen-
values eiλi , such that

U =
i
eiλi |λi λi|

The controlled version of U , denoted by cU , acts as

cU = |0 0| ⊗ I + |1 1| ⊗ U

Now consider an input state

|ψi
1 √
2
(|0 + |1) ⊗ | λi

where the first qubit is the control and the second is in the eigenstate of U .
Applying cU yields

cU |ψi
1 √
2

|0 + eiλi |1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_18

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_18&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_18

152 18 Phase Kickback

Thus, the target qubit remains unchanged, while the control qubit picks up a
relative phase of eiλi , only for the |1 basis state of the control qubit. This is the
essence of phase kickback.

As an example, let’s investigate a controlled RZ gate. The RZ gate is defined in
Qiskit as

RZ (λ) = e− i λ
2 Z = e−i λ

2 0

0 ei
λ
2

This is a diagonal unitary, so its eigenvectors are the computational basis states
|0 and |1 . Note that other libraries have different, albeit similar, definitions for
RZ gates.

A controlled version, cRZ has the form:

cRZ (λ) = |0 0| ⊗ I + |1 1| ⊗ RZ (λ)

which can be expanded in Dirac notation as

cRZ (λ) = (|0 0| ⊗ I + |1 1|) ⊗ e−i λ
2 |0 0| + e i

λ
2 |1 1|

We examine two cases to illustrate phase kickback:
Case 1: The input is 1 √

2
(|0 + |1) ⊗ | 0 .

Applying cRZ (λ), we get 1 √
2

|0 + e−i λ2 |1 |0 .
Case 2: The input is 1 √

2
(|0 + |1)|1 .

The output is 1 √
2

|0 + ei
λ
2 |1 |1 .

The following code simulates these two cases and plots the real and imaginary
parts of the probability amplitudes of each basis state for λ ∈ [0, 2π] in Fig. 18.1:

#!/usr/bin/python3

import numpy as np

from matplotlib import pyplot as plt

from qiskit import QuantumCircuit

from qiskit.circuit import Parameter

from qiskit_aer import StatevectorSimulator

Create parameter lambda

Lambda = Parameter("lambda")

Create Circuits for the two cases

circ1 = QuantumCircuit(2)
circ1.h(0)

18 Phase Kickback 153

Fig. 18.1 Phase kickback for Left: cRZ (λ) applied to the quantum state 1 √
2
(|0 + |1)|0 ; Right:

cRZ (λ) applied to the quantum state 1 √
2
(|0 + |1)|1 . The y-axis indicates the probability ampli-

tudes for each basis state (real and imaginary parts shown separately)

circ1.crz(Lambda,0,1)

circ2 = QuantumCircuit(2)
circ2.x(1) # Initialize second qubit in state |1>

circ2.h(0)

circ2.crz(Lambda,0,1)

154 18 Phase Kickback

Obtain statevectors of the end results for various parameter val-

ues

simulator = StatevectorSimulator()
lambdas = np.linspace(0,np.pi*2,100)
case_1_statevectors = np.array([simulator.run(circ1.reverse_

bits().assign_parameters({"lambda":_lambda})).result().get_

statevector() for _lambda in lambdas])

case_2_statevectors = np.array([simulator.run(circ2.reverse_

bits().assign_parameters({"lambda":_lambda})).result().get_

statevector() for _lambda in lambdas])

Plot real and imaginary parts of basis states

plt.rcParams[’text.usetex’] = True
fig, axs = plt.subplots(4,2,sharex=True, sharey=True)

for _i in range(4):

axs[_i,0].plot(lambdas, case_1_statevectors[:,_i].real, ’k-’)

axs[_i,0].plot(lambdas, case_1_statevectors[:,_i].imag, ’r--’)

axs[_i,1].plot(lambdas, case_2_statevectors[:,_i].real, ’k-’)

axs[_i,1].plot(lambdas, case_2_statevectors[:,_i].imag, ’r--’)

axs[0,0].set_xlim(0,np.pi*2)

axs[0,0].set_ylim(-1,1)

axs[3,0].set_xlabel(r"$ \lambda $")

axs[3,1].set_xlabel(r"$ \lambda $")

axs[0,1].legend(["Re", "Im"])

axs[0,0].set_ylabel(r"$| 00 \rangle$")

axs[1,0].set_ylabel(r"$| 01 \rangle$")

axs[2,0].set_ylabel(r"$| 10 \rangle$")

axs[3,0].set_ylabel(r"$| 11 \rangle$")

axs[0,0].set_title(r"$ \frac{1}{\sqrt{2}} (| 0 \rangle + | 1 \ran-

gle) | 0 \rangle $")

axs[0,1].set_title(r"$ \frac{1}{\sqrt{2}} (| 0 \rangle + | 1 \ran-

gle) | 1 \rangle $")

plt.show()

We see that the basis states |0∗ do not change with lambda, while basis states
|1∗ pick up a phase of e−i λ

2 and ei
λ
2 in the left and right plots, respectively.

Reference

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary
Edition, 1st edn. (Cambridge University Press, 2012). https://doi.org/10.1017/CBO978051197
6667

https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667

19Quantum Fourier Transform

The Quantum Fourier Transform (QFT) is the quantum analog of the classical
Discrete Fourier Transform (DFT) [1], and it plays a central role in several quan-
tum algorithms, including Shor’s factoring algorithm, quantum phase estimation,
and quantum signal processing. Unlike the classical DFT, which requires O(n2n)
operations and O(2n) memory to act on a 2n-dimensional vector, the QFT can
be implemented on an n-qubit quantum computer using only O n2 gates (or
even O(n log n) gates with approximation). The QFT transforms the probability
amplitudes of quantum states into the Fourier basis, enabling interference-based
speedups that are classically intractable.

Formally, given a quantum state |ψ expressed in the computational basis:

|ψ =
N −1

j = 0
ψj|j , where N = 2n.

the quantum Fourier transform is the unitary operation FN defined by its action
on the computational basis states:

FN |j =
1 √
N

N −1

k=0
e2π ij/N |k

Applying FN to |ψ yields the transformed state:

|φ = FN |ψ =
N −1

k=0

φk |k

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_19

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_19&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_19

156 19 Quantum Fourier Transform

where the amplitudes φk are the discrete Fourier transform of the original
amplitudes ψj :

φk =
1 √
N

N −1

j=0

ψje
2π ijk/ N

To derive a more efficient quantum implementation, we consider the product
form of the QFT using the binary representation of indices. For N = 2 n, where
n ∈ Z+, the basis states |j ∈ {|0 , ..., |2n − 1 may be relabeled using the binary
notation of the integers j as follows:

j = j12−1 + j22n−2 + · · · + jn20 :→ j 1j2 . . . jn

Similarly, the binary fraction is denoted as

jl/2 + jl + 1/4 + · · · + jm/2m−l+1 :→ 0 · j l jl+1 . . . jm

Using this notation, the QFT of a basis state |j = |j1j2...jn may be written as
a product state

FN |j =
1

2n/2
|0 + e0.jn |1 |0 + e0.jnjn−1 |1 . . . |0 + e0.j1j 2...jn |1

This decomposition reveals that the QFT can be constructed using a sequence
of Hadamard and controlled-phase gates and requires only O n2 operations.

We provide as an example a Qiskit implementation of a quantum Fourier trans-
form on a uniform superposition of basis states. A uniform superposition of qubits

corresponds to an amplitude encoding of a vector of 1’s, i.e., | = 1√
N

2n−1

k=0
|k ,

shown as the “before” state in Fig. 1.14, which corresponds to the 0th frequency
component in the Fourier basis. Performing a quantum Fourier transform on |
yields a quantum state | = FN | , an amplitude encoding of the Fourier trans-
form of the probability amplitudes of | . Measuring the qubits after the quantum
Fourier transform on | yields the quantum state | = |00 . . . 0 , the basis state
corresponding to the 0th frequency component as expected, shown in Fig. 19.1 as
the “after” state:

#!/usr/bin/python3

from matplotlib import pyplot as plt

from qiskit import QuantumCircuit

from qiskit.circuit.library import QFT

from qiskit_aer.primitives import SamplerV2

from qiskit.visualization import plot_histogram

19 Quantum Fourier Transform 157

Fig. 19.1 Left: Uniform superposition state to which QFT is applied. Right: Output of QFT; a
single basis state

beforeFT = QuantumCircuit(5)
Initialize state in uniform superposition

beforeFT.h([0,1,2,3,4])

Measure all qubits

beforeFT.measure_all()

afterFT = QuantumCircuit(5)
Initialize qubits

afterFT.h([0,1,2,3,4])

Add Fourier transform operation

qft = QFT(num_qubits=5,do_swaps=False).to_gate()
afterFT.append(qft, qargs=[0,1,2,3,4])

Measure all qubits

afterFT.measure_all()

Decompose Fourier transform operation into gates for simulator

afterFT = afterFT.decompose(reps=2)

Simulate the circuit

Simulate the circuit

sampler = SamplerV2()
job = sampler.run([beforeFT,afterFT],shots=2**20)
result_before = job.result()[0].data.meas.get_counts()
result_after = job.result()[1].data.meas.get_counts()

Plot a bar chart of all the results

158 19 Quantum Fourier Transform

plot_histogram(result_before,bar_labels=False,title=’Before

QFT’)

plot_histogram(result_after,bar_labels=False,title=’After QFT’)

plt.show()

Reference

1. C. Coppersmith, An approximate Fourier transform useful in quantum factoring. IBM Research
Division, RC 19642 (1994). https://doi.org/10.48550/arXiv.quant-ph/0201067

https://doi.org/10.48550/arXiv.quant-ph/0201067

20Quantum Phase Estimation

Quantum phase estimation (QPE) is a core subroutine in many quantum algo-
rithms, including Shor’s factoring algorithm and expectation value estimation. It
provides a way to estimate the eigenvalue associated with a known eigenstate
of a unitary operator. At the heart of QPE lies the phenomenon of phase kick-
back, and the quantum Fourier transform is used to extract the encoded phase
information. The algorithm demonstrates one of the key strengths of quantum com-
puting—efficient extraction of global properties (like eigenvalues) from unitary
dynamics.

Given an eigenstate |λi of a unitary operator U , quantum phase estimation
provides an estimate of the corresponding eigenvalue ei2π λ i . Phase estimation uses
the quantum Fourier transform to extract the phase kicked back by a sequence
of controlled unitary operations. A series of powers of U , each controlled by a
distinct qubit in the clock register, is applied to the eigenstate in the work register.
Figure 20.1 shows an example circuit with four control qubits. The control qubits
are initialized in uniform superposition before applying the controlled operations.
More specifically, the j t h control qubit applies the unitary U 2

j
to the work register.

Let us first assume that λi can be expressed exactly as a J -bit binary fraction

λi = 0. j1j2 . . . jJ

Denoting cjU 2
j
as the controlled-U 2

j
operations (controlled by the jth qubit in the

clock register), the application of the gates on the state:

1

2
J−1
2

(|0 + |1)⊗J −1 ⊗ |ψ

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_20

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_20&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_20

160 20 Quantum Phase Estimation

Fig. 20.1 Circuit for
quantum phase estimation

yields, via phase kickback:

J−1

j=0
cjU

2j (
1

2
J−1
2

(|0 + |1)⊗J−1|ψ)

= 1

2
J−1
2

J −1 ⊗
j=0

|0 + eiλi2
j |ψ

=
1

2
J−1
2

2J−1−1

k=0

eik2π λi |k λ m

where |k ranges over computational basis states of the clock register.
Performing the inverse quantum Fourier transform on the clock register trans-

forms this state into a computational basis state encoding the phase λi, resulting
in |λi being sampled with a probability of 1. Note that since ei2π λ i is periodic,
|λi will be measured such that 0 ≤ λi ≤ 1.

Now consider the case where λi is not exactly expressible as a J -bit binary
fraction, i.e., its closest binary fraction approximation is λi such that.

λi > λi and 0 ≤ λi − λ i ≤ δ

Performing phase estimation for this case will not yield a unique λi . Rather,
we will get a probability distribution of sampling various states |0. j1j2 . . . jJ .

To sample a state from the clock register to obtain λi up to m-bits of accuracy,

i.e., |λi − 0. j1j2 . . . jm| = λi −
m

λi ≤ 1
2m , we can choose

J = m + log 2 + 1

2

To achieve a success probability of p λi −
m

λi ≤ 1
2m ≥ 1 − .

However, the state |λi may not be available or may not be efficiently prepared.
In this case, an approximation λi ≈ |λi may be used instead. Expanding this
approximation as

λi =
i
ci|λi

20 Quantum Phase Estimation 161

it can be shown that the probability of measuring λi is at least

p λi = |ci|2(1 −)

Here, it must be assumed that λi has sufficient overlap with λi , i.e., λi|λl does
not decay exponentially with the number of qubits in the work register. Putting
together these results, the complexity of estimating eigenvalues up to a precision
using quantum phase estimation has an overall complexity of O(1) and has a

circuit illustrated in Fig. 20.1.
The standard implementation of the phase estimation algorithm requires J

ancilla qubits. A more efficient implementation is the iterative phase estimation
algorithm, which requires a single ancilla qubit and mid-circuit measurements to
perform phase estimation [1].

We provide the code below to estimate an eigenvalue of the following unitary:

U (φ) = e2π iφZ = e2π iφ 0
0 e−2π iφ

U (φ) has an eigenvector |0 with an eigenvalue e2π i φ . When quantum phase
estimation is applied to this eigenvector, we expect to measure φ̃ with high prob-
ability. We implement this in the following code for various values of −1.5 ≤
φ ≤ 1.5 using 4, 12, and 16 ancilla qubits to demonstrate the behavior of quantum
phase estimation and its periodicity, i.e., φ̃ ≈ φ modulo 1 in Fig. 20.2:

#!/usr/bin/python3

import numpy as np

from qiskit.circuit.library import PhaseEstimation

from qiskit.circuit.library import RZGate

from qiskit.primitives import StatevectorSampler

from matplotlib import pyplot as plt

min_ancillae = 8
max_ancillae = 17
step = 4
ancillae = range(min_ancillae,max_ancillae,step)

phi = np.arange(-1.5,1.,0.01).round(3)

phi_measured = np.zeros((len(ancillae),len(phi)))
errors = np.zeros((len(ancillae),len(phi)))

mysampler = StatevectorSampler()

162 20 Quantum Phase Estimation

Fig. 20.2 Top: Quantum phase estimation for phi in the range. Bottom: Adjusted plot to account
for periodicity of φ. Adding 4 qubits to the clock register leads to an effective increase in one digit
of precision in the quantum phase estimation of φ

Reference 163

for i, m in enumerate(ancillae):

for j in range(len(phi)):

myunitary = RZGate(-4*np.pi*phi[j])
myqpe = PhaseEstimation(m,myunitary)
myqpe.measure_all()

pub = (myqpe)
job = mysampler.run([(pub)],shots=1_00_000)
result = job.result()[0]
raw = result.data[’meas’]
counts = raw.get_counts()
maxkey = max(counts, key=counts.get)

Compute and store the measured value of QPE

phi_measured[i,j] = 0
for _i, bit in enumerate(reversed(maxkey)):

if bit==’1’:

phi_measured[i,j] += 1/(2**(_i+1))
Store the errors

Phi has a period of 1, adjust for it when computing errors

errors[i,j] = np.abs((phi[j] % 1) - phi_measured[i,j])

fig, axs = plt.subplots(2)
for i in range(len(ancillae)):

axs[0].scatter(phi, np.log10(errors[i,:]))

axs[0].set(xlabel=’phi’, ylabel=’log10(phi_measured - (phi mod

1))’)

axs[0].legend([str(_i) + ’ ancillae’ for _i in list(ancillae)])

for i in range(len(ancillae)):

axs[1].scatter(phi % 1, np.log10(errors[i,:]))

axs[1].set(xlabel=’phi mod 1’, ylabel=’log10(phi_measured - (phi

mod 1))’)

axs[1].legend([str(_i) + ’ ancillae’ for _i in list(ancillae)])

fig.set_size_inches(10, 20)

plt.show()

Reference

1. C.J. O’Loan, Iterative phase estimation. J. Phys. A: Math. Theor. 43(1), 015301 (2010). https://
doi.org/10.1088/1751-8113/43/1/015301

https://doi.org/10.1088/1751-8113/43/1/015301
https://doi.org/10.1088/1751-8113/43/1/015301

21Trotterization

Trotterization refers to a family of methods that approximate the exponential of a
sum of non-commuting operators by products of exponentials of individual terms.
This approximation plays a central role in quantum simulation, particularly for
simulating time evolution under a Hamiltonian H . It allows us to construct circuits
that simulate quantum dynamics without the need for additional ancilla qubits.
While not asymptotically optimal, these methods are straightforward to implement
and widely used on near-term devices.

Let H = k
j=0 H j. The Lie–Trotter and Suzuki–Trotter [1] formulas approx-

imate the time evolution operator e−iHt using the Baker–Campbell–Hausdorff
formula

e−iHt = e
−i

k

j=0
Hjt =

⎛

⎝e
−i

k

j=0
Hj

t
r

⎞

⎠
r

≈
k

j=0
e− iHj

t
r

r

+ O
k2t 2

r
.

Here, r is the number of Trotter steps. The error arises because the matrices Hj

generally do not commute, i.e., the commutator Hj, Hk = 0. Increasing the error
in Trotterization arises from the fact that the matrices Hj do not commute in gen-
eral, i.e., the commutator Hj, Hk = 0. Increasing r improves the approximation
at the cost of longer circuits.

Higher order Trotter formulas can be constructed to reduce the error further.
Although the error bounds on Trotter formulas do not scale well, Trotter methods
have the advantage of not requiring additional (ancilla) qubits, and the circuit
implementations of the individual eiHj

t
r can be straightforward. As an example,

the second-order Suzuki–Trotter formula is

e−iHt ≈ S2(t) =
k

j=0
e− iHj

t
r

0

j=k
e−iHj

t
r

r

+ O
k3t 3

r2
.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_21

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_21&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_21

166 21 Trotterization

More generally, the (2k)th order Suzuki–Trotter formula is defined recursively as
[2]

e−iHt ≈ S2k (t) = S2k−2(uk t)
2S2k−2((1 − 4uk)t)S2k−2(u k t)

2

where uk = 1
4−41/(2k−1) .

Recent work has shown other higher order formulas with better scaling com-
pared to Trotter–Suzuki formulas [1, 3–5]. The bounds on Trotter errors are known
to be loose, but in practice, the errors have been shown to be orders of magnitude
lower [6]. Errors in Trotterizations can be reduced by grouping together commut-
ing subsets of {Hj} and changing the order of operations in which these groups are
applied.

Since H is often decomposed as a sum of Pauli strings, we provide below the
procedure and quantum circuits for exponentiating Pauli strings.

For convenience, we express Pauli operators as σk ∈ {I , X , Y , Z} where
σ0, σ1, σ2, σ3 = I ,X , Y , Z respectively.

The exponentiation of a single Pauli gate σi ∈ {X , Y , Z} is straightforward since
it is a local operator:

exp(−i(I ⊗ . . . ⊗ I ⊗ σi ⊗ I ⊗ . . . ⊗ I)t) = I ⊗ . . . ⊗ I ⊗ Ri(2t) ⊗ I ⊗ . . . ⊗ I

where Ri(2t) is defined as

Ri(2t) = exp(−itσi).

For Pauli strings describing nonlocal operators, i.e., Pauli strings with more than
one Pauli gate, the exponentiation is a little more involved. We first describe the
kernel for these implementations: the exponentiation of strings of Pauli Z gates.

Consider an arbitrary Pauli string

P = ⊗
j
k

σ k

Without any loss of generality, let’s simply consider the non-trivial portion of the
string, i.e., σk = I

P̃ = ⊗
j

k 0

σ k

Similar to the procedure described in Chap. 27, Expectation Value Estimation, for
obtaining expectation values, we may diagonalize this P̃ as

P̃ = ⊗
j

k 0

V † k DkVk

21 Trotterization 167

Fig. 21.1 Circuits to exponentiate ZZ using: Left: One ancilla qubit; Right: No ancilla qubits

which can be exponentiated as

e−i P̃t = ⊗
j

k 0

V † k e
−iDk tV k

where Dk = Z . Therefore, any arbitrary Pauli string can be exponentiated by
applying single-qubit gates V † k to transform to the Z basis, exponentiating a Pauli
string of Z operators, and transforming back to the computational basis by applying
single-qubit gates Vk . Therefore, efficiently exponentiating Pauli Z strings is the
kernel of this task.

Two types of techniques have been developed for this operation: ancilla-based
and ancilla-free implementations as shown in Fig. 21.1 [7, 8].

The single-qubit Z exponentiation is implemented as e−itZ = RZ (2t) in Qiskit.
These circuits are readily extended to longer Pauli Z strings, and a circuit to expo-
nentiate a general Pauli string P̃ = ⊗

j
k 0

σ k as e−it P̃ and the cX gates can be arranged

as either a “chain/ladder” or as a “fountain” as shown in Fig. 21.2, among other
options.

These circuits have been optimized to achieve a depth of O(log n) [9]. We note
that dynamic circuits can further reduce the depth of these circuits from O(n) to
O(1) [10].

We provide here as an example a Hamiltonian simulation of single-qubit Pauli
terms H = X + Z using the first- and second-order Trotter method for various t,
for varying number of Trotter steps, with the error plots shown in Fig. 21.3.

We then provide an example of Hamiltonian simulation of multi-qubit Pauli
terms H = 0.9X ⊗ Y ⊗ Z + 1.1Y ⊗ Z ⊗ X . Since the generation of circuits
for multi-qubit Pauli strings is a little more involved, we use built-in functions in
Qiskit for this example, with results plotted in Fig. 21.4:

#!/usr/bin/python3

import qiskit

from qiskit_aer import UnitarySimulator

168 21 Trotterization

Fig. 21.2 Ancilla-free circuit exponentiating an arbitrary Pauli string P̃ using cX gates arranged
as a Top: chain or ladder; Bottom: fountain

from scipy.linalg import expm

import numpy as np

import matplotlib.pyplot as plt

min_t = 1
max_t = 5
Number of Trotter Steps

m = [10,20,40,80,100, 200, 400, 800, 1000, 2000, 4000, 8000, 10000]

1st order Trotter

for t in range(min_t,max_t+1):

Calculate exact solution classically

21 Trotterization 169

Fig. 21.3 Error scaling of first- and second-order Trotter methods

Fig. 21.4 Suzuki–Trotter errors for exponentiating (0.9X ⊗ Y ⊗ Z + 1.1Y ⊗ Z ⊗ X) it

exact_solution = expm(-t * 1j * (np.array([[0, 1], [1, 0]])

+ np.array([[1, 0], [0, -1]])))

errors = []
for r in m:

Create a register of 1 qubit

myQRegister = qiskit.QuantumRegister(1, ’\psi’)

170 21 Trotterization

Create a quantum circuit with using myRegister

myCircuit = qiskit.QuantumCircuit(myQRegister)
for _r in range(r):

myCircuit.rx(t*2/r,0)

myCircuit.rz(t*2/r,0)

Simulate the circuit to obtain overall unitary of Trotteri-

zation

mySimulator = UnitarySimulator()
result = mySimulator.run(myCircuit). result()

finalUnitary = result.get_unitary()
Compare circuit unitary with exact unitary

errors.append(np.linalg.norm(finalUnitary - exact_

solution,2))

plt.loglog(m,errors)

2nd order Trotter

for t in range(min_t,max_t+1):

Calculate exact solution classically

exact_solution = expm(-t * 1j * (np.array([[0, 1], [1, 0]])

+ np.array([[1, 0], [0, -1]])))

errors = []
for r in m:

Create a register of 1 qubit

myQRegister = qiskit.QuantumRegister(1, ’\psi’)

Create a quantum circuit with using myRegister

myCircuit = qiskit.QuantumCircuit(myQRegister)
for _r in range(r):

myCircuit.rx(t/r,0)

myCircuit.rz(t*2/r,0)

myCircuit.rx(t/r,0)

Simulate the circuit to obtain overall unitary of Trotteri-

zation

mySimulator = UnitarySimulator()
result = mySimulator.run(myCircuit).result()
finalUnitary = result.get_unitary()
Compare circuit unitary with exact unitary

errors.append(np.linalg.norm(finalUnitary - exact_

solution,2))

plt.loglog(m,errors,linestyle=’dashed’)

plt.xlabel(’# of Trotter steps’)

plt.ylabel(r’$|error|_2$’)

plt.legend([’t = {}, 1st Order’.format(t) for t in range(min_t,max_
t+1)]

+[’t = {}, 2nd Order’.format(t) for t in range(min_t,max_t+1)])

plt.show()

21 Trotterization 171

#!/usr/bin/python3

import qiskit

from qiskit_aer import UnitarySimulator

from scipy.linalg import expm

import numpy as np

import matplotlib.pyplot as plt

from qiskit.quantum_info import SparsePauliOp

from qiskit.circuit.library import PauliEvolutionGate

from qiskit.synthesis import SuzukiTrotter

min_t = 1
max_t = 5
Number of Trotter Steps

m = [1,2,4,8,16,32,64,128]
myOp = SparsePauliOp("XYZ",0.9) + SparsePauliOp("YZX",1.1)
2nd order Suzuki-Trotter

for t in range(min_t,max_t+1):

Calculate exact solution classically

exact_solution = expm(-t * 1j * myOp.to_matrix())

errors = []
for r in m:

Define Suzuki-Trotter method

mySynthesis = SuzukiTrotter(order=2, reps=r, cx_

structure=’chain’)

Create Pauli Evolution

myEvolution = PauliEvolutionGate(myOp,time=t,synthesis=
mySynthesis)

Append to a quantum circuit

myCircuit = qiskit.QuantumCircuit(myOp.num_qubits)
myCircuit.append(myEvolution,range(0,myOp.num_qubits))

Simulate the circuit to obtain overall unitary of Trotteri-

zation

mySimulator = UnitarySimulator()
result = mySimulator.run(myCircuit.decompose(reps=2)).

result()

finalUnitary = result.get_unitary()
Compare circuit unitary with exact unitary

errors.append(np.linalg.norm(finalUnitary - exact_

solution,2))

plt.loglog(m,errors)

4th order Suzuki-Trotter

for t in range(min_t,max_t+1):

Calculate exact solution classically

172 21 Trotterization

exact_solution = expm(-t * 1j * myOp.to_matrix())

errors = []
for r in m:

Define Suzuki-Trotter method

mySynthesis = SuzukiTrotter(order=4, reps=r, cx_

structure=’chain’)

Create Pauli Evolution

myEvolution = PauliEvolutionGate(myOp,time=t,synthesis=
mySynthesis)

Append to a quantum circuit

myCircuit = qiskit.QuantumCircuit(myOp.num_qubits)
myCircuit.append(myEvolution,range(0,myOp.num_qubits))

Simulate the circuit to obtain overall unitary of Trotteri-

zation

mySimulator = UnitarySimulator()
result = mySimulator.run(myCircuit.decompose(reps=2)).

result()

finalUnitary = result.get_unitary()
Compare circuit unitary with exact unitary

errors.append(np.linalg.norm(finalUnitary - exact_

solution,2))

plt.loglog(m,errors,linestyle=’dashed’)

plt.xlabel(’# of Trotter steps’)

plt.ylabel(r’$|error|_2$’)

plt.legend([’t = {}, 2nd Order’.format(t) for t in range (min_t,max_
t+1)]

+ [’t = {}, 4th Order’.format(t) for t in range(min_t,max_t+1)])

plt.show()

References

1. M. Suzuki, Generalized Trotter’s formula and systematic approximants of exponential oper-
ators and inner derivations with applications to many-body problems. Commun. Math. Phys.
51(2), 183–190 (1976). https://doi.org/10.1007/BF01609348

2. M. Suzuki, General theory of higher-order decomposition of exponential operators and sym-
plectic integrators. Phys. Lett. A 165(5–6), 387–395 (1992). https://doi.org/10.1016/0375-960
1(92)90335-J

3. E. Remez, Sur le calcul effectif des polynomes d’approximation de tchebichef. CR Acad. Sci.
Paris (1934)

4. C.-H. Cho, D.W. Berry, M.-H. Hsieh, Doubling the order of approximation via the randomized
product formula. Phys. Rev. A 109(6), 062431 (2024). https://doi.org/10.1103/PhysRevA.109.
062431

5. M.E.S. Morales, P.C.S. Costa, D.K. Burgarth, Y.R. Sanders, D.W. Berry, Greatly improved
higher-order product formulae for quantum simulation (2022). https://doi.org/10.48550/
ARXIV.2210.15817

https://doi.org/10.1007/BF01609348
https://doi.org/10.1016/0375-9601(92)90335-J
https://doi.org/10.1016/0375-9601(92)90335-J
https://doi.org/10.1103/PhysRevA.109.062431
https://doi.org/10.1103/PhysRevA.109.062431
https://doi.org/10.48550/ARXIV.2210.15817
https://doi.org/10.48550/ARXIV.2210.15817

References 173

6. A.M. Childs, D. Maslov, Y. Nam, N.J. Ross, Y. Su, Toward the first quantum simulation with
quantum speedup. Proc. Natl. Acad. Sci. U.S.A. 115(38), 9456–9461 (2018). https://doi.org/
10.1073/pnas.1801723115

7. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniver-
sary Edition, 1st edn. (Cambridge University Press, 2012). https://doi.org/10.1017/CBO978
0511976667

8. J.D. Whitfield, J. Biamonte, A. Aspuru-Guzik, Simulation of electronic structure Hamiltoni-
ans using quantum computers. Mol. Phys. 109(5), 735–750 (2011). https://doi.org/10.1080/
00268976.2011.552441

9. A. Cowtan, S. Dilkes, R. Duncan, W. Simmons, S. Sivarajah, Phase gadget synthesis for shal-
low circuits. Electron. Proc. Theor. Comput. Sci. 318, 213–228 (2020). https://doi.org/10.4204/
EPTCS.318.13

10. I. Moflic, A. Paler, On the Constant Depth Implementation of Pauli Exponentials (2024).
https://doi.org/10.48550/arXiv.2408.08265. arXiv:2408.08265

https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.4204/EPTCS.318.13
https://doi.org/10.4204/EPTCS.318.13
https://doi.org/10.48550/arXiv.2408.08265
http://arxiv.org/abs/2408.08265

22Linear Combination of Unitaries

Many quantum algorithms require the application of an operator that is not
directly unitary, but rather a linear combination of known unitaries. This situation
arises, for instance, in Hamiltonian simulation, quantum singular value transfor-
mation, and quantum linear systems solvers. The linear combination of unitaries
(LCU) method enables such operators to be implemented on a quantum computer,
assuming circuit-level access to each unitary component. It is especially powerful
because it allows one to process non-Hermitian or even general matrices when
combined with block-encoding and qubitization techniques [1].

Suppose we are given circuits or oracles for the unitaries Ul and their associated
coefficients αl . We want to implement the operator

U =
l

αlU l

on a quantum state. The LCU method accomplishes this by combining two
subroutines: SELECT and PREPARE.

The PREPARE operation encodes the coefficients into a quantum superposition:

PREPARE|0 ⊗m = |α

where |α = 1
α1 l

√
αl |l s.t. αl ∈ R+. This is without any loss of generality since

any phase of the coefficients can be absorbed into the unitary.
The SELECT operation applies the appropriate unitary based on the index in

the ancilla register:

SELECT =
l

|l l| ⊗ Ul

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_22

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_22&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_22

176 22 Linear Combination of Unitaries

Fig. 22.1 A circuit
implementing the linear
combination of unitaries of
Pauli matrices in the example
and code of this chapter

To implement the linear combination of unitaries, the following sequence is
used:

PREPARE† ⊗ I (SELECT)(PREPARE ⊗ I).

Measuring the ancilla register in the state |0 ⊗m indicates the successful
application of the linear combination of unitaries.

Note that the LCU method is an instance of block encoding of an arbitrary
matrix H , where H can be non-Hermitian, into a larger unitary. Block-encoded
access to a matrix enables the use of powerful quantum algorithmic frameworks,
including qubitization, introduced in Chap. 23, Qubitization and Quantum Sig-
nal Processing. A particularly efficient and versatile application of qubitization is
quantum signal processing (QSP).

Finally, we note that the LCU method can be used to add two matrices H1 and
H2 via their block-encodings UH1 and UH2 .

We provide as an example a Qiskit implementation of a circuit taking a linear
combination of the unitaries:

I ⊗ I + X ⊗ I + I ⊗ X + I ⊗ Z =

⎛

⎜⎜⎝

2 1 1 0
1 0 0 1
1 0 2 1
0 1 1 0

⎞

⎟⎟⎠

where the coefficients αl = 1
4 ∀ l ∈ [0, 3], for which the corresponding

PREPARE operation is simply a uniform superposition achieved by Hadamard
gates. We provide an implementation below with the corresponding circuit shown
in Fig. 22.1:

#!/usr/bin/python3

import qiskit

from qiskit_aer import UnitarySimulator

from qiskit.circuit.library import XGate, ZGate

import numpy as np

Reference 177

LCU register

lcuRegister = qiskit.QuantumRegister(2, ’LCU’)

Work register

workRegister = qiskit.QuantumRegister(2, ’\psi’)

myCircuit = qiskit.QuantumCircuit(workRegister,lcuRegister)

PREP+ operation

myCircuit.h(lcuRegister)

SELECT operation

myCircuit.append(XGate().control(num_ctrl_qubits=2,ctrl_

state=’11’),[*lcuRegister, workRegister[0]])

myCircuit.append(XGate().control(num_ctrl_qubits=2,ctrl_

state=’01’),[*lcuRegister, workRegister[1]])

myCircuit.append(ZGate().control(num_ctrl_qubits=2,ctrl_

state=’10’),[*lcuRegister, workRegister[0]])

PREP operation

myCircuit.h(lcuRegister)

Simulate circuit

mySimulator = UnitarySimulator()
result = mySimulator.run(myCircuit.decompose(reps=2)).result()
Extract subspace of successfully measuring LCU qubits as 0

and multiply by submormalization factor 4

print(np.array(result.get_unitary().data[0:4,0:4]).round(10)*4)

Reference

1. A.M. Childs, N. Wiebe, Hamiltonian simulation using linear combinations of unitary opera-
tions. QIC 12(11, 12) (2012). https://doi.org/10.26421/QIC12.11-12

https://doi.org/10.26421/QIC12.11-12

23Qubitization and Quantum Signal
Processing

Many advanced quantum algorithms rely on applying polynomial transforma-
tions to the eigenvalues or singular values of a matrix. Such transformations are
foundational to quantum algorithms for Hamiltonian simulation, linear system
solving, amplitude amplification, and quantum machine learning. Two powerful
frameworks—Qubitization and Quantum Signal Processing (QSP)—enable these
polynomial transformations efficiently and with provable optimality in terms of
gate complexity.

Qubitization

Qubitization constructs a unitary operator that acts as an SU (2) rotation in a 2D
subspace associated with each eigenvalue of a matrix A [1]. This allows the appli-
cation of Chebyshev polynomial transformations to eigenvalues using repeated
applications of a structured unitary.

Consider the 2 × 2 rotation matrix:

O(λ) = λ −√
1 − λ 2√

1 − λ2 λ
.

whose powers are given by

Ok (λ) = Tk (λ) −√
1 − λ2Uk−1(λ)√

1 − λ2Uk−1(λ) Tk (λ)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_23

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_23&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_23

180 23 Qubitization and Quantum Signal Processing

Fig. 23.1 The operation Z
followed by UA

where Tk (λ) and Uk (λ) are Chebyshev polynomials of the first and second kind,
respectively. If the scalar λ is replaced with a matrix A, then the matrix

Ok (A) = Tk (A) −√
1 − A2Uk−1(A)√

1 − A2Uk−1(A) Tk (A)

is a block-encoding of Tk (A). Using a linear combination of these Chebyshev
polynomials (using LCU techniques introduced in Chap. 22: Linear Combina-
tion of Unitaries), any arbitrary polynomial of the matrix Awhich is the desired
equivalent can be created.

To extend this to arbitrary block-encodings of the form:

UA = A ∗
∗ ∗

; where A = 0⊗m UA 0
⊗m

qubitization introduces a reflection:

Z = 2 0⊗m 0⊗m ⊗ I − I

to apply the operation OA = UAZ , which is the desired equivalent of O(A), as
shown in the circuit in Fig. 23.1.

For a Hermitian A, repeated application of OA = UAZ will yield the desired
Chebyshev polynomial of A. For non-Hermitian A, the alternating sequence OA =
UAZ U

†
AZ can be used instead.

Since the block-encoding of the resulting Chebyshev polynomial (an orthog-
onal polynomial basis) is a unitary operation, any arbitrary polynomial can be
constructed using a linear combination of these unitaries. However, this would
require an overhead of up to O(log(d)) ancillary qubits where d is the degree of
the polynomial.

Quantum Signal Processing

Quantum signal processing (QSP) [2] addresses the issue of multiple ancilla qubits
required to form arbitrary polynomials as linear combinations of unitaries. This is
achieved by forming a polynomial directly by applying rotation operations to the
ancilla qubit. The main idea behind quantum signal processing is to replace the Z
gate in qubitization with the general Z rotations RZ (2φi), where φi ∈ ∈ Rd+1

Quantum Signal Processing 181

Fig. 23.2 Top: The controlled rotation operation cRφj . Bottom: A quantum signal processing
circuit for a non-Hermitian block-encoding

is a predetermined sequence of d + 1 rotation angles to form a block-encoding of
the desired polynomial P(A):

P(A) = 0|⊗mU (A)|0 ⊗m

U (A) = e−iφ0Z
d

j=1
UAe

−iφj Z

where A is Hermitian. An overview of a quantum signal processing circuit for
a non-Hermitian block-encoding UA of a matrix A is given in Fig. 23.2, where
block-encoding and its Hermitian conjugate are used in an alternating sequence.
The quantum signal processing theorem [2] states that a sequence of d + 1 rota-
tion angles exists for any complex polynomial P of maximum degree d , and the
polynomial is even for even d and odd for odd d . Furthermore, it states that the
complex conjugate of the polynomial can be formed using the phase angles − .

Theorem (Quantum Signal Processing [2]) The quantum signal processing
sequence U produces a matrix that may be expressed as a polynomial function
of x:

U = eiφ0Z
d

k=1
W (x)eiφk Z = P(a) iQ(a)

√
1 − a2

iQ†(a)
√
1 − a2 P∗(a)

For x ∈ [−1, 1], and a exists for any polynomials P, Q in x s.t.:

(i) deg(P) ≤ d , deg(Q) ≤ d − 1.
(ii) P has a parity (is even or odd) d mod 2 and Q has a parity (d − 1) mod 2.
(iii) |P|2 + 1 − a2 Q2 = 1.

Using this result, we note that any arbitrary polynomial can be formed by tak-
ing a linear combination of the even and odd parts of the polynomial. Furthermore,
the real or complex parts of a polynomial can be extracted by taking a linear com-
bination of the polynomial and its complex conjugate. There are various libraries
for calculating the required phase angles for any desired polynomial [2, 3], with

182 23 Qubitization and Quantum Signal Processing

QSPPACK [3] providing state-of-the-art performance at the time of writing this
manuscript.

Recent work dubbed Generalized Quantum Signal Processing has generalized
the Z rotations on the ancilla qubit to include X and Y rotations [4], which allows
arbitrary polynomials of degree d to be constructed without parity decompositions.
This method requires access to a block-encoding of eiA, rather than A itself.

Quantum signal processing is currently the most powerful and optimal method
for many quantum algorithms. The quantum eigenvalue transform, quantum sin-
gular value transform [5], factoring, phase estimation, Hamiltonian simulation,
linear system solution, amplitude amplification, eigenstate filtering, and many
other quantum computing problems can be reformulated as a quantum signal
processing problem with optimal or near-optimal scaling results [2].

In Fig. 23.2, we show the implementation of a controlled rotation using a phase
angle φi and a quantum signal processing circuit implementing the sequence of
controlled rotations to implement a polynomial of a matrix A using its block-
encoding UA.

Quantum Eigenvalue Transformation and Quantum Singular
Value Transformation

We can now summarize the quantum signal processing procedure applied to Her-
mitian and non-Hermitian matrices as general frameworks referred to as Quantum
Eigenvalue Transformation and Quantum Singular Value Transformation.

For a Hermitian matrix A = V † V , applying quantum signal processing
directly yields

P(A) = V †P()V

which is known as the quantum eigenvalue transformation.
For a non-Hermitian matrix A = U V †, one can form odd polynomials

Podd (A) = UPodd () V †

and even polynomials

Peven(A) = V †Peven()V † or Peven(A) = UPeven ()U

by alternating between UA and U
†
A . This is known as the quantum singular value

transformation.
Though being unable to form even polynomials of A of the form UPeven()V †

may seem restrictive, several important applications can be realized through this
framework, e.g., solving linear systems by approximating the odd function x−1

with an odd polynomial Px−1 (A) ≈ A−1.

References 183

References

1. G.H. Low, I.L. Chuang, Hamiltonian simulation by qubitization. Quantum 3, 163 (2019). https://
doi.org/10.22331/q-2019-07-12-163

2. J.M. Martyn, Z.M. Rossi, A.K. Tan, I.L. Chuang, Grand unification of quantum algorithms.
PRX Quant. 2(4), 040203 (2021). https://doi.org/10.1103/PRXQuantum.2.040203

3. Y. Dong, X. Meng, K.B. Whaley, L. Lin, Efficient phase-factor evaluation in quantum sig-
nal processing. Phys. Rev. A 103(4), 042419 (2021). https://doi.org/10.1103/PhysRevA.103.
042419

4. D. Motlagh, N. Wiebe, Generalized quantum signal processing (2023). arXiv. https://doi.org/10.
48550/ARXIV.2308.01501

5. A. Gilyén, Y. Su, G.H. Low, N. Wiebe, Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (ACM, Phoenix AZ USA, 2019), pp. 193–
204. https://doi.org/10.1145/3313276.3316366

https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1103/PRXQuantum.2.040203
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.1103/PhysRevA.103.042419
https://doi.org/10.48550/ARXIV.2308.01501
https://doi.org/10.48550/ARXIV.2308.01501
https://doi.org/10.1145/3313276.3316366

24Amplitude Amplification
and Estimation

Many quantum algorithms, including Grover’s search and quantum Monte Carlo,
are inherently probabilistic and produce a desired outcome with some success
probability p < 1. When this success probability is low, repeating the algorithm
naively increases the number of required samples to O(1/p), which can be inef-
ficient. Amplitude amplification is a powerful quantum technique that boosts this
success probability quadratically, requiring only O 1/ √p repetitions [1]. When
p is unknown, amplitude estimation provides an efficient way to estimate it using
elements of phase estimation, again achieving quadratic speedup over classical
sampling methods.

Quantum Amplitude Amplification

Consider a quantum algorithm A acting on the input state |0 ⊗n to prepare an
output state

A|0 ⊗n = |ψ = √
p ψgood + 1 − p|ψbad

where

ψgood |ψ = ψgood |ψgood = p

ψbad |ψ = ψbad |ψbad = 1 − p

s.t. ψgood is the desired output with success probability p. The amplitude ampli-
fication procedure will boost the success probability to O(1) using O 1/ √p
applications of A.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_24

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_24&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_24

186 24 Amplitude Amplification and Estimation

More specifically, this is achieved using O
√
p applications of an operator Q,

sometimes referred to as a Grover operator, of the form:

Q = −AS0A−1 Sgood

Here, Sgood is an operator that marks the good subspace with a −ve phase:

Sgood |ψ = − √p ψgood + 1 − p|ψbad

and S0 is an operator that marks the state |0 ⊗n with a −ve sign:

S0
√
p|0 ⊗n + 1 − p|⊥ = −p|0 ⊗n + 1 − p|⊥

Note that the operator Sgood is specific to A [2] provides a guide to imple-
menting the operator Sgood given A. On the other hand, the circuit shown in
Fig. 24.1 is an implementation of the operation S0, which has the following matrix
representation:

S0 =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

−1
1
1

. . .
1
1
1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

Let us analyze the Grover operator and its effect. First, let us define a 2D
subspace spanned by the basis states ψgood and |ψbad . This can be visualized
using Fig. 24.2.

Using this figure, one may easily visualize that the operator −Sgood simply
reflects a state across |ψbad as shown in Fig. 24.3.

Therefore, we may rewrite it as a Householder reflector

−Sgood = I − 2|ψbad ψbad |

Fig. 24.1 Implementation of
S0, a unitary circuit that
marks the state |0 ⊗n with −
ve phase

Quantum Amplitude Amplification 187

Fig. 24.2 2D subspace
spanned by the good and bad
states

Fig. 24.3 Reflecting across
|ψbad

We now turn to the remaining part of the Grover operator: AS0A−1.
Since the operator S0 simply marks the standard basis state |0 with a −ve

phase and leaves the rest of the basis states unchanged, it can also be rewritten as
the Householder reflector:

S0 = I − 2|0 0|

188 24 Amplitude Amplification and Estimation

Substituting this into AS0A−1 we get

AS0A−1 = A(I − 2|0 0|)A−1

= I − 2|ψ ψ |

which is clearly a Householder reflector across that state |ψ in the
ψgood , |ψbad basis. Using this, we can rewrite the Grover operator as a product

of two Householder reflectors

Q = R|ψ R bad

where

Rbad = I − 2|ψbad ψ bad |

and

R|ψ = I − 2|ψ ψ |

Geometrically, we may now visualize these two reflections using Fig. 24.4.
Visually we can see that the amplitude of |ψ has been boosted. We can use

this visual argument to rewrite |ψ and Q:

|ψ = sin θ ψgood + cos θ |ψbad

Q|ψ = sin 3θ ψgood + cos 3θ |ψbad

Fig. 24.4 One iteration of
amplitude amplification
visualized as two reflections

Quantum Amplitude Amplification 189

where sin θ = √p, cos θ =
√
1 − p. We can see that for θ ≤ π/ 4, this will lead

to an increase in the probability of measuring ψgood . We can now formalize this
process to obtain the optimum number of applications of Q.

It can be shown [1] that the eigenvectors of Q are

|ψ±
1 √
2

1 √
p

ψgood ± i √
1 − p

|ψbad

with eigenvalues λ± = e±i 2θ .
By expressing |ψ in the eigenbasis |ψ± and applying Q j times, we arrive at

Qj|ψ =
− i√
2

e(2j+1)iθ |ψ+ e−(2j+1)iθ |ψ−

= 1√
p
sin((2j + 1)θ) ψgood + 1√

1 − p
cos((2j + 1)θ)| ψbad

As is apparent, applying Q too many times will lead to over-rotation, which
will subsequently start reducing the probability of measuring the good state. If a
is known, choosing j = π/4θ = O

√
p leads to

1 √
p
sin((2j + 1)θ) ≥ 1 − p√

p
≥ max(1 − p, p) ≥ 1/2 = O(1)

which is a quadratic speedup. In many cases p may not be known, but it can be
estimated using the amplitude estimation procedure (presented later in this chapter)
without losing the quadratic speedup [1]. The overall complexity of amplitude
amplification can now be summarized as follows.

Theorem (Amplitude Amplification) Let A be an unitary algorithm such that
A|0 ⊗n = |ψ = √

p ψgood +
√
1 − p|ψbad . Given access to unitaries that apply a

phase of −1 to the states |0 ⊗n and ψgood and choosing m = π/4θ , QmA|0 ⊗n

produces a state with the outcome ψgood with at least max(1 − a, a) = O (1)
probability where sin θ = √

p and 0 < θ ≤ π/2.

The overall circuit for amplitude amplification is provided in Fig. 24.5.
More advanced algorithms exist for amplitude amplification for specific prob-

lems, a notable example being Variable-Time Amplitude Amplification [3], which
can provide speedups for algorithms whose average stopping time is smaller than
the maximum stopping time by recasting it as a variable-time stopping algorithm.
A more efficient version of the Variable-Time Amplitude Amplification subroutine
was presented by [4].

Fig. 24.5 Circuit for
amplitude amplification

190 24 Amplitude Amplification and Estimation

Grover’s search algorithm [5] is a special case of amplitude amplification,

which searches for an entry in an unstructured database of N entries using O
√
N

queries to the database compared to O(N) classical queries.
Note that in the formulation above, we have considered |0 ⊗n as the initial

state. It may be possible that the input to algorithm A is a quantum state |φ
prepared using another quantum algorithm Aφ . In this case, the operator S0 (or
the reflection R0) will need to be replaced by an operation marking the state |φ
(or a Householder reflector about |φ). In the worst case, this would necessitate
multiple invocations of Aφ .

Quantum Amplitude Estimation

The process of amplitude amplification requires knowledge of the amplitude p cor-
responding to the probability of measuring a “good” outcome. In many practical
quantum algorithms, however, this amplitude is not known in advance. The quan-
tum amplitude estimation (QAE) procedure addresses this by providing a method
to estimate p with quadratic improvement in sampling complexity compared to
classical techniques.

The setup for amplitude estimation is similar to amplitude amplification [1].
Given a quantum state

|ψ = √
p ψgood + 1 − p|ψbad

where

ψgood |ψ = √p, ψbad |ψ = 1 − p

the goal is to estimate the unknown success probability p up to a desired precision
.
A naïve approach to estimating

√
p up to a precision by directly sampling

|ψ and counting the number of ψgood measurements requires

t = O
√
p 1 − √p

2

samples. A quadratic improvement can be made in the number of samples using
the QAE procedure.

The quantum amplitude amplification procedure utilizes elements of amplitude
amplification and quantum phase estimation. The key idea is to transform the esti-
mation of p into an eigenvalue estimation problem, which is then solved using
quantum phase estimation.

From our previous analysis of amplitude amplification, we note that

p = sin2(θ)

Quantum Amplitude Estimation 191

as evident from Fig. 24.4.
Furthermore, we also know that the eigenvalues of Q are λ± = e±i 2θ . There-

fore, by applying controlled versions of Q, one may estimate θ as θ̃ , which leads
to an estimate of p as p̃ = sin2 θ̃ .

If the estimation error in θ satisfies

θ − θ̃ ≤

then the error in p̃ satisfies

|p − p̃| ≤ 2 p(1 − p) + 2

Further analysis of this method leads to the following result.

Theorem (Amplitude Estimation [1]) For any positive integer k, amplitude ampli-
fication produces an estimate 0 < p̃ ≤ 1 s.t.

|p − p̃| ≤ 2 πk
√
p(1 − p)

t
+ k2

π 2

t2

with probability at least 8/π 2 when k = 1 and with a probability greater than
1 − 1

2(k−1) for k ≥ 2 using t evaluations of A.

For further details, we refer to the original work by [1]. The procedure is sum-
marized in the circuit in Fig. 24.6. Once an estimate θ̃ is obtained, one may
estimate p̃ as

p̃ = sin2 θ̃ .

To obtain p̃ up to a precision ε, the number of samples required is

t = O
√
p(1 − p)

Fig. 24.6 Circuit for
quantum amplitude
estimation

192 24 Amplitude Amplification and Estimation

which is a quadratic improvement over the classical sampling approach.
Similar to quantum phase estimation, the output state is of the form |y |ψ ⊗ n,

where |y encodes the estimated amplitude. This can be extracted as p ≈
sin2 π ym , where m is the number of basis states in the phase estimation register.

This subroutine has numerous applications. For instance, it can be used to
estimate the expectation values of unitary operators, as outlined in Chap. 27:
Expectation Value Estimation. The quadratic improvement of quantum amplitude
estimation over naïve sampling is exploited in the quantum Monte Carlo algorithm
to achieve a speedup over classical Monte Carlo, which is presented in the next
chapter.

References

1. G. Brassard, P. Høyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation.
Contemp. Math. 305; S.J. Lomonaco, H.E. Brandt (eds.), Providence, Rhode Island: American
Mathematical Society (2002), pp. 53–74. https://doi.org/10.1090/conm/305/05215

2. A.N. Chowdhury, Y. Subasi, R.D. Somma, Improved implementation of reflection operators
(2018). https://doi.org/10.48550/ARXIV.1803.02466

3. A. Ambainis, Variable time amplitude amplification and quantum algorithms for linear algebra
problems, in Leibniz International Proceedings in Informatics, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2012), pp. 636–647. https://doi.org/10.4230/LIPICS.STACS.2012.636

4. S. Chakraborty, A. Gilyén, S. Jeffery, The power of block-encoded matrix powers: improved
regression techniques via faster Hamiltonian simulation, in Leibniz International Proceedings
in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019), pp. 1–33. https://doi.
org/10.4230/LIPICS.ICALP.2019.33

5. L.K. Grover, A fast quantum mechanical algorithm for database search, in Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing—STOC ’96 (ACM Press,
Philadelphia, Pennsylvania, United States, 1996), pp. 212–219. https://doi.org/10.1145/237814.
237866

https://doi.org/10.1090/conm/305/05215
https://doi.org/10.48550/ARXIV.1803.02466
https://doi.org/10.4230/LIPICS.STACS.2012.636
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.4230/LIPICS.ICALP.2019.33
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866

25Quantum Monte Carlo

Monte Carlo methods are a class of numerical techniques widely used to
approximate integrals and expectation values, particularly in high-dimensional or
analytically intractable settings. A prototypical goal is to compute integrals of the
form

Ef [h(X)] =
X

f (x)h(x) dx

where Ef [h(X)] is the expectation value of a function h under the density function
f over a random variable x. The classical Monte Carlo estimate for J samples is

ĥJ =
1

J

J

j=1
h x(j)

where x(j) are independent identically distributed samples over the distribution
x(j) ∼ f (x). Based on the strong law of large numbers, as J → ∞, ĥJ → Ef [h(X)].
However, to achieve an estimation error = ĥJ − Ef [h(X)] , the required number

of samples J scales as J = O 1
2 .

Quantum Monte Carlo achieves a quadratic speedup, requiring only O 1 sam-
ples using quantum amplitude estimation, which we developed in the previous
chapter.

Consider 2n sampling points corresponding to bitstrings x. Assume that an
algorithm A operating on n qubits prepares the state

A|0 ⊗n =
2n−1

x=0
a2 x |x

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_25

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_25&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_25

194 25 Quantum Monte Carlo

Consider also a function v(x) : {0, 1}n → R, mapping the bitstrings x to v(x). We
would like to estimate the expectation v alue

Ea[v(A)] =
2n−1

x=0
|ax|2v(x)

In this setting f (x) and h(x) are analogous to |ax|2 and v(x) respectively. v(x) is
accessible through a rotation unitary R operating on the same n qubits as A, and
an ancilla qubit:

R|x 0 = |x 1 − v(x)|0 + v(x)|1

Combining these two operations as F

F |0 ⊗n+1 = R(A ⊗ I)|0 ⊗n+1

= |χ =
2n−1

x=0
ax|x 1 − v(x)|0 + v(x)|1

We can see that measuring the probability of measuring the rightmost qubit as |1
for the state |χ is

p(|· 1) = |ax|2v(x) = μ

which is the desired expectation value μ = Ea[v(A)]. Estimating this by repeated
sampling leads to a standard error

= μ(1 − μ)
t

implying t = O μ(1−μ)
2 samples for precision , matching the classical Monte

Carlo rate.
To achieve a quadratic improvement, we apply the quantum amplitude estima-

tion (QAE) procedure. We identify the target “good” state as

ψgood = |· 1

so that

|χ = √
μ ψgood + 1 − μ2|ψbad

We will now proceed with constructing the remainder of the ingredients for
quantum amplitude estimation.

25 Quantum Monte Carlo 195

Consider a unitary which marks the good states |· 1 with a –ve phase

Sgood = I − 2I ⊗ |1 1|

This operator flips the sign of the amplitude on the “good” subspace, and is
trivially implemented with a Z gate applied to the rightmost qubit:

(I ⊗ Z)|χ =
2n−1

x=0
ax 1 − v(x)(I ⊗ Z)|x 0 +

2n−1

x= 0
ax v(x)(I ⊗ Z)|x 1

=
2n−1

x=0
ax 1 − v(x)|x 0 −

2n−1

x=0
ax v(x)|x 1

= 1 − μ2|ψbad
√

μ ψgood .

Similar to amplitude amplification, we define an operator that reflects across |χ

U = I − 2|χ χ

which can be implemented as U = FS0F †.
Using these ingredients, we construct the Grover operator

Q = −FS0F† Sgood

As we know from the previous chapter, the eigenvalues of Q are e±i2θ where
sin θ = √μ. Applying quantum phase estimation to Q allows us to estimate θ ,
and thus the desired quantity:

μ = sin2(θ)

The result is a quantum algorithm that estimates μ with only

t = O
μ(1 − μ)

queries, quadratically fewer than the classical sampling approach.

26Matrix-Vector Multiplications
and Affine Linear Operations

Matrix-vector and affine linear operations are foundational in scientific comput-
ing. This chapter presents quantum methods to implement these operations using
block-encodings, with emphasis on techniques that improve success probability
and ancilla overheads.

Matrix-Vector Multiplication Using Block-Encoding

Recall that a matrix A can be encoded in a unitary

UA = A/α ∗
∗ ∗

where α ≥ A is a normalization constant. Measuring the m ancilla qubits in the
state |0 ⊗m yields

A/α = 0|m ⊗ In UA |0 m ⊗ I n

A matrix-vector product can be applied as

UA|0 ⊗m|b =
A
α ∗
∗ ∗

b
0

=
Ab
α
∗

=
1

α
|0 ⊗m|Ab + | ⊥

The ancilla qubits can be measured successfully as |0 ⊗m with a probability

p |0 ⊗m =
1

α2 A||b 2

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_26

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_26&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_26

198 26 Matrix-Vector Multiplications and Affine Linear Operations

Sequence of Matrix-Vector Multiplications

One may apply a sequence of matrix-vector products using multiple block encod-
ings. As an example, consider two block encodings UA1 and UA2 , which are
(α1, m1, 0) and (α2, m2, 0) block encodings of A1 and A2, respectively as shown
in Fig. 26.1. We may prepare the quantum state

1

α1α2
A2A1|ψ

by executing the following circuit.
There are a couple of important things to note here. First, the normalization

factors accumulate as a product, leading to an exponentially diminishing suc-
cess probability. Second, the number of ancilla qubits increases as the sum of
individual ancilla qubits for each block encoding, i.e., they grow linearly. Two
techniques address these issues: the compression gadget reduces ancilla overhead,
and uniform singular value amplification (USVA) boosts success probability.

Compression Gadget

The compression gadget [1, 2] is a transformation of a quantum circuit applying a
sequence of matrix-vector multiplications into an equivalent one with fewer ancilla
qubits. Consider a sequence of (αi, mi, 0) block encodings UAi for matrices Ai,
which are applied to a quantum state |ψ to get

1

i=L

1

αi
Ai|ψ

Denoting mmax = max
i

m i as the largest number of ancilla needed for each indi-

vidual block encoding and defining λ = log2 L + 1, the unitary operation ADD is
defined as

ADD|i = mod
λ

(i + 1)

Fig. 26.1 Circuit for applying a sequence of 2 matrix-vector multiplications with two separate
block encodings

Sequence of Matrix-Vector Multiplications 199

Fig. 26.2 Quantum circuit for a compression gadget

The compression gadget may be constructed as shown in Fig. 26.2.
The block encodings reuse the mmax qubits, at the expense of λ additional

ancilla qubits for a “counter.”

Uniform Singular Value Amplification

We now address the issue of exponentially decaying success probabilities for
a sequence of matrix multiplications using the block-encoding method. This is
achieved by using a block encoding Ui to create another block-encoding with
a higher success probability (smaller normalization factor). These boosted block
encodings are then used to compute the matrix-vector products.

The uniform singular value amplification (USVA) [2, 3] method boosts the nor-
malization factor of each block encoding toward the largest possible value, i.e.,
the intrinsic normalization factor αmin A . This is achieved by fitting an odd
polynomial to a linear function

P(x) =
1 − δ

αi
x

over the interval x ∈ [0, αi] using quantum signal processing, as shown in
Fig. 26.3. This is done individually for each block UAi .

Computing the matrix polynomial P(Ai) then yields a new block-
encoding of Ai with a smaller normalization constant. More specifi-

cally, it is a Ai
(1−δ) , mi + 1, ˜i Ai block-encoding of Ai, and it requires

Fig. 26.3 Visualization of
the operation of uniform
singular value amplification

200 26 Matrix-Vector Multiplications and Affine Linear Operations

O αi
δ Ai log α i

Ai ˜i
accesses to (controlled versions of) UAi and its adjoint (QSP

sequence has a phase angle sequence of length, or P(x) is a polynomial of degree

O αi
δ Ai log α i

Ai ˜i
). The error ˜i in the new block encoding arises from the

imperfect polynomial fit through QSP, and may be reduced exponentially by
increasing the number of phase angles in the QSP sequence.

USVA Lemma [2]: Let UA be a (α, m, 0) block encoding of A. A
A

1−δ , m + 1 A block encoding ŨA of A can be constructed using

O α
δ A log

α
A applications of controlled-UA and U

†
A .

We may now use these boosted block encodings, denoted by ŨAi , to compute
the matrix-vector products (using a compression gadget to reduce ancilla over-
heads). We state the result of [2] in the following theorem, which considers the
more general case where UAi is a (αi, mi i Ai) block encoding of Ai.

Theorem ([2]) Given (αi, mi i Ai) block encodings UAi of Ai for 1 ≤ i ≤ L
where i i ≤ 1 2 . For any 0 ≤ ≤ 1

2L a α , m , block encoding of 1
i=L Ai can

be constructed where

L
i=1 Ai

2(1 − δ)L
≤ α ≤

e1/2 L
i=1 Ai

2(1 − δ) L

m = mmax + log2 L + 2

= e
1
2 L +

L

i=1
l

L

i=1

Ai

using O αi
δ Ai log α i

Ai
(controlled) applications of each UAi and its adjoint.

In summary, the USVA procedure requires one additional ancilla qubit, leading
to mmax + 1 ancillae for each boosted block encoding ŨAi . Using a compression
gadget to apply the matrix products leads to a total of mmax + log2 L + 2 ancilla

qubits using total of O
L
i=1

αi
δ Ai log α i

Ai
applications of block encodings of

UAi . The success probability of the final product is

p |0 ⊗(mmax+log2 L+2) =

⎡

⎢⎢⎣
e
1
2

L

i=1
Ai

2(1 − δ)L
1

i=L
Ai|ψ

⎤

⎥ ⎥⎦
2

with an error of

= e
1
2 L +

L

i=1
l

L

i=1
Ai .

Affine Linear Operations 201

Affine Linear Operations

So far, we have developed methods to apply matrix-vector products (linear
operations) of the form

1

i=L
Aix

We now turn our attention to the more general sequences of affine linear operations
of the general form:

x(i+1) = Ax(i) + b (i)

We present two methods for encoding affine linear operations on quantum com-
puters: solving a block-linear system of equations and performing block-matrix
multiplications. As an example, we will consider the following sequence of affine
linear operations to demonstrate the two techniques

x1 = A0x0 + b 0

x2 = A1x1 + b 1

After presenting these two methods, we explain a post-processing step to extract
the desired final vector and methods to boost the success probability of this post-
processing step.

Block-Linear System of Equations:

⎛

⎝
I

−A0 I
−A1 I

⎞

⎠

⎛

⎝ x0
x1
x2

⎞

⎠ =

⎛

⎝
x0
b0
b1

⎞
⎠

Solving this linear system of equations yields a column of vectors

⎛

⎝
x0
x1
x2

⎞

⎠ =

⎛

⎝ x0
A0x0 + b0
A1 x1 + b1

⎞
⎠

This block-matrix system of equations may be solved using direct quantum linear
system algorithms (QLSA), which are introduced in Lecture 30 Quantum Linear
System Algorithms: Direct Methods. Efficient application of quantum linear sys-
tem algorithms requires the linear system to be well-conditioned. For the case
Ai 1, the linear system is well-conditioned, i.e., for 1 ≤ i ≤ l, κM , = 2 l
where M is the block-linear system. Note that the QLSA will introduce a solution
error.

202 26 Matrix-Vector Multiplications and Affine Linear Operations

Block-Matrix Multiplication

The following sequence of matrix multiplications M2M1b = x yields the same
result

⎛

⎝
I

I
A1 I

⎞

⎠

⎛

⎝
I
A0 I

I

⎞

⎠

⎛

⎝ x0
b0
b1

⎞

⎠

=

⎛

⎝
I

I
A1 I

⎞

⎠

⎛

⎝ x0
A0x0 + b0

b1

⎞

⎠

=

⎛

⎝
I

I
A1 I

⎞

⎠

⎛

⎝
x0
x1
b1

⎞

⎠ =
⎛
⎝ x0

x1
A1x1 + b1

⎞
⎠ =

⎛
⎝ x0
x1
x2

⎞
⎠

UM1 = M1/α1 ∗
∗ ∗

; UM2 = M 2/α2 ∗
∗ ∗

The procedures presented above for a sequence of matrix multiplications may then
be used to implement this operation.

Post-processing and Boosting Success Probabilities

The two methods presented earlier prepare a quantum state encoding the entire
sequence of vectors as

|x =
l

i=0
|i xi

⎛

⎜⎜⎜⎝

|x0
|x1
...

|x2

⎞

⎟⎟⎟⎠

The first register |i is often referred to as an index register or a Feynman–
Kitaev clock, and the second register |xi is the work register. To prepare the
desired final state |xi , the index register needs to be measured. Measuring the
index register in the state |l indicates that the work register is in the state |xi .
The probability of a successful measurement is

p(|l) =
xl 2

x 2

which diminishes as the number of steps l increases. To circumvent this issue, a
sequence of p “copy” steps can be appended to the sequence of operations:

xl+i = xl+i−1 ∀ i ∈ 1, p

References 203

which, in the case of the block-linear system of equations approach, can be
appended to the existing matrix as

⎛

⎝
I

−A0 I
−A1 I

⎞

⎠

⎛

⎝
x0
x1
x2

⎞

⎠ =

⎛

⎝
x0
b0
b1

⎞

⎠ →

⎛

⎜⎜⎜⎜⎝

I
−A0 I

−A1 I
−I I

−I I

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

x0
x1
x2
x2
x2

⎞

⎟⎟⎟ ⎟⎠ =

⎛
⎜⎜⎜⎜⎝

x0
b0
b1
0
0

⎞
⎟⎟⎟⎟⎠

Note that this does not violate the no-cloning theorem. The boosted success
probability is

psucc =
l+p

i=l
p(|i) =

p

i=0

xl+i
2

x 2 = (p + 1)
xl 2

x 2

The success probability can be further boosted by a quadratic factor using
amplitude amplification.

As an example, for the block-linear system approach, appending these copy
steps yields the block matrix:

⎛

⎝
I

−A0 I
−A1 I

⎞

⎠

⎛

⎝ x0
x1
x2

⎞

⎠ =

⎛

⎝
x0
b0
b1

⎞
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
∗ I

.
∗ I

−I I
.

−I I

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0
∗
...
xl
xl
xl
xl

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 0
∗
...

bl−1

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the measurement operation will also lead to renormalization due to

the Born rule, and any error in |x will be amplified in |xl by a factor of x 2

xl
2 .

The techniques presented in this chapter are used extensively to develop quan-
tum algorithms for differential equations and iterative quantum linear system
algorithms.

References

1. G.H. Low, N. Wiebe, Hamiltonian simulation in the interaction picture (2019). arXiv:1805.
00675. https://doi.org/10.48550/arXiv.1805.00675

http://arxiv.org/abs/1805.00675
http://arxiv.org/abs/1805.00675
https://doi.org/10.48550/arXiv.1805.00675

204 26 Matrix-Vector Multiplications and Affine Linear Operations

2. D. Fang, L. Lin, Y. Tong, Time-marching based quantum solvers for time-dependent linear
differential equations. Quantum 7, 955 (2023). https://doi.org/10.22331/q-2023-03-20-955

3. A. Gilyén, Y. Su, G.H. Low, N. Wiebe, Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (ACM, Phoenix, AZ, USA, 2019), pp. 193–
204. https://doi.org/10.1145/3313276.3316366

https://doi.org/10.22331/q-2023-03-20-955
https://doi.org/10.1145/3313276.3316366

Part VI

Quantum Algorithms

This part provides an overview of foundational algorithms developed for quantum
computers, with a focus on their application to scientific and engineering computa-
tion. Developing quantum algorithms necessitates a fundamental rethinking due to
key differences between classical computing models, such as the Turing machine,
and the gate-based quantum computing model. While classical algorithms have
benefited from decades of refinement, specialized libraries (such as BLAS for lin-
ear algebra), and dedicated hardware accelerators, quantum computing remains in
an early stage. Progress is shaped by both hardware limitations, such as error rates
and coherence times, and the development of new algorithmic paradigms.

The field of quantum algorithms is broad and includes celebrated results such
as Shor’s factoring and Grover’s search; however, we deliberately leave out several
well-known algorithms that, while foundational, have limited direct impact on the
kinds of large-scale numerical and simulation problems faced by computational
engineers. Instead, we focus on core algorithmic techniques—such as expectation
value estimation, Hamiltonian simulation, quantum linear system solvers, differen-
tial equation solvers, and variational methods—that form the backbone of quantum
scientific computing. These algorithms are chosen for both their conceptual sig-
nificance and their practical relevance to problems where quantum computers are
expected to offer genuine advantages over classical approaches. Our goal is to pro-
vide readers with a toolkit of quantum algorithms that are most likely to influence
the development of computational science as quantum hardware matures, while
being candid about current limitations and open challenges.

Chapter 27, “Expectation Value Estimation”, presents a variety of quantum
techniques for extracting physical observables and statistical quantities from quan-
tum states, providing the foundation for scientific and engineering applications of
quantum algorithms.

Chapter 28, “Hamiltonian Simulation Techniques”, introduces the central
challenge of simulating quantum time evolution, reviewing several quantum
approaches for approximating the dynamics of quantum systems relevant to
chemistry, materials, and physics.

Chapter 29, “Eigenvalue Problems”, surveys quantum algorithms for computing
eigenvalues and eigenvectors of matrices, with applications to spectral analysis,
principal component methods, and quantum chemistry.

Chapter 30, “Quantum Linear System Algorithms: Direct Methods”, covers
direct quantum algorithms for solving linear systems of equations, such as the

https://doi.org/10.1007/978-3-032-03325-3_27
https://doi.org/10.1007/978-3-032-03325-3_28
https://doi.org/10.1007/978-3-032-03325-3_29
https://doi.org/10.1007/978-3-032-03325-3_30

206 Part VI: Quantum Algorithms

Harrow–Hassidim–Lloyd (HHL) algorithm, and discusses conditions for efficient
implementation.

Chapter 31, “Quantum Linear System Algorithms: Iterative Methods”, presents
iterative quantum algorithms designed for large or structured linear systems,
exploring their potential for exponential speedup and discussing issues such as
preconditioning.

Chapter 32, “Quantum Ordinary Differential Equation Algorithms: Block-
Matrix Algorithms”, describes methods for mapping systems of ordinary differ-
ential equations (ODEs) to block-linear systems solvable by quantum algorithms,
addressing both homogeneous and inhomogeneous problems.

Chapter 33, “Quantum Ordinary Differential Equation Algorithms: Time-
Marching Algorithms”, introduces quantum algorithms that simulate the time
evolution of ordinary differential equations (ODE) using time-marching schemes.

Chapter 34, “Quantum Partial Differential Equation Algorithms”, explores
quantum algorithms for partial differential equations (PDEs), focusing on strate-
gies for discretization, reduction to ODE systems, and direct quantum solution
techniques for high-dimensional problems in engineering and the sciences.

Chapter 35, “Variational Algorithms: Theory”, develops the mathematical and
algorithmic framework for variational quantum algorithms, which employ hybrid
quantum-classical optimization to solve problems in simulation, optimization, and
machine learning.

Chapter 36, “Notable Variational Algorithms”, surveys prominent variational
quantum algorithms—including the Variational Quantum Eigensolver (VQE),
Quantum Approximate Optimization Algorithm (QAOA), and Variational Quan-
tum Linear Solver (VQLS)—and discusses their applications in quantum chem-
istry, combinatorial optimization, and linear algebra.

Chapters 27–34 are ordered to build upon one another, with earlier chapters cov-
ering more mature techniques and later chapters highlighting emerging methods
and recent progress in quantum algorithm development.

https://doi.org/10.1007/978-3-032-03325-3_31
https://doi.org/10.1007/978-3-032-03325-3_32
https://doi.org/10.1007/978-3-032-03325-3_33
https://doi.org/10.1007/978-3-032-03325-3_34
https://doi.org/10.1007/978-3-032-03325-3_35
https://doi.org/10.1007/978-3-032-03325-3_36
https://doi.org/10.1007/978-3-032-03325-3_27
https://doi.org/10.1007/978-3-032-03325-3_34

27Expectation Value Estimation

Estimating an expectation value of a quantum state |ψ for an operator H is defined
as the task of estimating

Hψ = ψ |H | ψ

where H is either a Hermitian or unitary operator. For Hermitian operators, this is
often referred to as “measuring the observable H . ”

Note: The symbol H is also used to denote the Hadamard gate in quantum com-
puting. Although this notation is standard in the literature, we alert the reader to
this potential source of confusion and clarify usage whenever necessary.

There are several standard techniques for expectation value estimation. We
summarize three widely used procedures in Table 27.1.

Pauli Diagonalization

Pauli Diagonalization is the most widely used method in NISQ algorithms. The
procedure does not require any ancilla qubits.

We begin by considering an arbitrary Hermitian matrix H . Since H is Hermi-
tian, it can be diagonalized as H = V †DV , allowing us to rewrite the expectation
value as

H ψ ψ |H |ψ = ψ |V †DV |ψ = ψ D ψ =
i

Dii i| 2

where ψ = V | ψ . If we have access to a procedure to apply V , we can prepare
ψ , sample measurement outcomes in the diagonal basis of D, and estimate the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_27

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_27&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_27

208 27 Expectation Value Estimation

Table 27.1 Summary of
various techniques for
expectation value estimation

Procedure Sample complexity Ancillae

Pauli diagonalization O 1 2 None

Hadamard test O 1 2 1

Phase estimation O(1) O(log 1)

probability distribution

p(i) = ψ M †
i Mi ψ

by sampling bitstrings from ψ to get an estimate p̃(i) of p(i). The expectation
value can then be approximated as

ψ |H |ψ ≈
i
Diip̃(i)

However, in practice, this is very unlikely to be feasible in general since V and
Dii may not be computable efficiently, or an efficient procedure to implement V
on a quantum computer may not be available.

Fortunately, in problems arising in quantum simulation, H can be expressed
as a linear combination H =

j
αjH j, where αj ∈ C, Hj ∈ C2n ×2n of simpler

operators Hj in the form of strings of Pauli gates or operators, often referred to as
Pauli strings. An example of a Pauli string Hj is

Hj = I ⊗ X ⊗ Y ⊗ I ⊗ Z

These sums are also typically sparse, i.e., contain relatively few terms compared
to the dimension of the problem. Replacing H with its additive decomposition

j
αjHj, we get

Hψ = ψ |H |ψ = ψ |
j

αjHj|ψ =
j

αj ψ |Hj|ψ

where

Hex = σa ⊗ σb ⊗ . . . ⊗ σn = ⊗
j
k

σk

such that σk ∈ {I , X , Y , Z} as σ0, σ1, σ2, σ3 = I ,X , Y ,Z respectively. Using the
eigendecompositions of individual Pauli gates, σk = V †

k DkV k , provided in Table 8,

Pauli Diagonalization 209

this may be transformed into

H ψ =
j

αj ψ |Hj|ψ =
j

αj ψ | ⊗
j

σk |ψ

=
j

αj ψ | ⊗
j
V †
k DkVk |ψ =

j

αj ψj ⊗
j
Dk ψj

=
j

αj ψj Dj ψj =
i j

αjDjii i| j
2

In the simplest setting, given |ψ , the procedure consists of

(i) Preparing the states ψj by applying the (known) operators ⊗
j
k

V k on the state

|ψ .
(ii) Sampling bitstrings in the computational basis.

(iii) Computing the double sums over i and j.

To compute the terms Djii we first define a bitstring whose bits are set to 1 for
each operator σk = I in Hj and 0 otherwise, from left to right in the same order
as the Kronecker product order of Hj. Using the same example Pauli string Hex

above, we obtain

Dkii can be computed using the parity (number of 1’s), , of the bitstring
obtained from a bitwise AND operation (denoted as &) on the measured bitstring
i and , i.e.,

Using the same example, we consider the case where we sample a bitstring
l = bin(21) = 10101 from ψ . This leads to = parity(10101 & 01101) =
parity(00101) = 2, and therefore Dexll = 1.

We now consider another example of a quantum state |φ = α|00 + β|01 +
γ |10 + δ|11 and an operator

H = H1 + H2

210 27 Expectation Value Estimation

where

H1 = aX ⊗ Y

H2 = bZ ⊗ I

Using the eigendecompositions of Pauli gates, we obtain

H1 = aHZH ⊗ SHZHS †

H2 = bZ ⊗ I

Therefore, the states φ1 = H ⊗ HS†| φ and φ2 = Z ⊗ I | φ are prepared on
a quantum computer and sampled.

Suppose that a total of 1024 samples are obtained (512 each for φ1 and φ2
with the following statistics:

Measured string i # of samples for φ1 # of samples for φ2

|00 105 76

|01 253 97

|10 82 312

|11 72 27

The bitstrings and corresponding to H1 and H2 are then computed by
setting bits to 1 in each position where a Pauli gate is applied:

We may compute the entries Dkii as

Measured string i pl1 pl2

|00 00 00 1 1

|01 01 00 −1 1

|10 10 10 −1 −1

|11 11 10 1 −1

The expectation value may then be computed as

H φ = a
105

512
+ (−1)

253

512
+ (−1)

82

512
+

72

512

Pauli Diagonalization 211

+ b
76

512
+

97

512
+ (−1)

312

512
+ (−1)

27

512

Typically, quantum computing libraries automatically perform these compu-
tations for sums of Pauli strings. The following code compares the Qiskit
implementation of expectation value computations with a custom implementation.
The code first samples quantum states ψ for each Pauli string and post-processes
the bitstrings. These values are then compared with Qiskit’s built-in procedure for
computing expectation values exactly:

#!/usr/bin/python3

import numpy as np

import random

from qiskit import QuantumCircuit, QuantumRegister, ClassicalReg-

ister

from qiskit_aer import UnitarySimulator, StatevectorSimulator

from qiskit.primitives import Estimator, Sampler

from qiskit_aer.primitives import SamplerV2 as Sampler, Estima-

torV2 as Estimator

from qiskit.quantum_info import SparsePauliOp

from qiskit.circuit.library import SGate

from qiskit.circuit.random import random_circuit

Create a random quantum circuit

seed = 12345
n = 4
circ = random_circuit(n, n*2, seed=seed)

Define some random observables as Pauli operators

num_paulis = 10
ops = []
pauli_pool = [’I’,’X’,’Y’,’Z’]
for _i in range(num_paulis):

pauli_string = ”
for _j in range(n):

pauli_string = pauli_string + pauli_

pool[random.randint(0,3)]

ops.append(SparsePauliOp(pauli_string,random.random()))

Combine into one operator

H = sum(ops)

Create circuits corresponding to Pauli string diagonalizations:

Applying the appropriate eigenvectors to each qubit for the cor-

responding Pauli gate in the Pauli string

212 27 Expectation Value Estimation

obs_circs = []
for pauli_string in H.to_list():

pauli_circ = QuantumCircuit(n)
for index, pauli in enumerate(pauli_string[0]):

if pauli==’X’:

pauli_circ.h(n-1-index)

elif pauli==’Y’:

pauli_circ.append(SGate().inverse(),[n-1-index])

pauli_circ.h(n-1-index)

obs_circs.append((pauli_circ,pauli_string))

Sample these circuits and package into a tuple with

quasiprobabilities, Pauli strings, and coefficients of the Pauli

strings

sampler = Sampler()
qp_ps_coeff = []
for obs_circ in obs_circs:

newcirc = circ.compose(obs_circ[0])
newcirc.measure_all()

job = sampler.run([newcirc.decompose()],shots=10_000_000)
result = job.result()[0].data.meas.get_counts()
Get the quasi-probabilities from the result

The result is a dictionary with bitstrings as keys and their

counts as values

total_counts = sum(result.values())
for key in result:

fresult[key] = result[key] / total_counts

fq_p = result
fqp_ps_coeff.append((q_p,obs_circ[1][0],obs_circ[1][1]))

Estimate the expectation values

evs = []
for _i in qp_ps_coeff:

Unpack tuple

qp = _i[0]
ps = _i[1]
coeff = _i[2].real

Create bitstring from Pauli string

Any qubit with a Pauli applied will be marked as 1 in the bitstring

pauli_bs = ”
for _j in ps:

if (_j == ’I’):

pauli_bs = pauli_bs + ’0’

else:

Pauli Diagonalization 213

pauli_bs = pauli_bs + ’1’
print(f’Pauli string: {ps} Bitstring: {pauli_bs}\n’)

print(f’Quasi-probs: {qp} \n’)

Expectation value is computed as a sum over all the

quasiprobabilities of the sampled bitstrings

ev = 0
for index_bs in qp:

Get quasiprobability

_k = qp[index_bs]
print(’Index BS: ’ + index_bs)
print(’Pauli BS: ’ + pauli_bs)
Perform bitwise AND with these two

This will tell us how many -ve signs are being picked up

bs_mask_ps = f’{{0:0{n}b}}’.format(int(index_bs,2) &

int(pauli_bs,2))

print(’Bitwise AND: ’ + bs_mask_ps)
Compute parity of this final bitstring

This will give the overall number of -ve signs

parity = 1
for _l in bs_mask_ps:

if _l==’1’:

parity = parity*-1
print(f’Parity: {parity}’)

print()

Compute the contribution of the sampled bitstring + its
quasiprobability

towards the expectation value

ev = ev + parity * _k

evs.append(coeff * ev)

print()

print()

Print out expectation values of each Pauli string

print(np.array(evs))

Estimate observables using Qiskit’s Estimator method and compare

estimator = Estimator()
job = estimator.run([(circ.decompose(),o) for o in H])

qiskit_estimator_result = [_result.data.evs for _result in

job.result()]

print(qiskit_estimator_result)

Compute total error for each expectation value

214 27 Expectation Value Estimation

print(f’Total error for each expectation value:

{np.abs(np.sum(evs) - np.sum(qiskit_estimator_result))}’)

The final line of output is the difference between the two methods:

Total error for each expectation value: 0.00017310799751490968

which is within the expected bounds for sampling error (scales as O 1 2).
It may be possible for various Pauli strings to commute. As an example,

consider the Pauli strings

H1 = α1I ⊗ Z ⊗ X , H2 = α2 X ⊗ Z ⊗ I

With the mixed-product property of Kronecker products in mind, we note that
each Pauli matrix in the first Pauli string commutes with the corresponding Pauli
matrix in the second Pauli string, i.e.,

[I , X] = [Z, Z] = [X , I] = 0

implying that these two Pauli strings commute. Therefore, they must share
the same eigenvectors V1, V 2. Using this fact, instead of preparing and sam-
pling ψ1 = V1|ψ , ψ2 = V2|ψ individually for these two Pauli strings,

one may simply sample ψ1,2 = V1|ψ = V2|ψ and then compute

i (α1D1ii + α2D2ii) i| 1,2

2
for better sampling efficiency. This is more appar-

ent by diagonalizing H1 and H2:

H1 = α1I ⊗ Z ⊗ HZH = α1HH ⊗ Z ⊗ HZH

H2 = α2HZH ⊗ Z ⊗ I = α2HZH ⊗ Z ⊗ HH

H1 + H2 = H (α1I + α2Z)H ⊗ (α1Z + α2Z) ⊗ (α 1Z + α2I)

Note that for Pauli strings to commute, each Pauli matrix in the first string does
not need to commute with the corresponding Pauli matrix in the second string. As
an example, consider

H3 = α3Z ⊗ Y ⊗ Z, H4 = α4X ⊗ Z ⊗ I

Not every individual Pauli matrix in the first stringcommutes with the second
string, e.g., [Z, X] = 0. Regardless, H3 and H4 do commute:

[Z ⊗ Y ⊗ Z, X ⊗ Z ⊗ I] = [Z, X] ⊗ [Y , Z] ⊗ [Z, I] = [Z,X] ⊗ [Y , Z] ⊗ 0 = 0

Hadamard Test 215

Efficiently partitioning Pauli strings into groups of commuting strings is an
active area of research. A recent implementation and review can be found in [1].

There are other methods in the literature to estimate expectation values using
various decompositions and measurement bases [2]. However, the Pauli string
decomposition is used most commonly due to its simplicity and generality.

Hadamard Test

We now introduce the Hadamard test for estimating the expectation value ψ |U |ψ
of a unitary U ∈ C2n×2 n . Since U is unitary rather than Hermitian, ψ |U |ψ ∈ C,
i.e., the expectation value is no longer guaranteed to be real.

The real and imaginary parts of the expectation value may be estimated using
the following circuits shown in Fig. 27.1.

To see how this works, consider a state |ψ . Adding the ancilla qubit, we get

|0 ψ

Applying the first Hadamard gate, we obtain

(H ⊗ I)|0 ψ =
1√
2
(|0 + |1)|ψ

Subsequently, after applying the controlled version of U we get

(cU)
1 √
2
(|0 + |1)|ψ = (|0 0|I + |1 1 |U)

1√
2
(|0 + |1)|ψ

=
1√
2
(|0 ψ + |1 U |ψ)

and finally, applying the final Hadamard gate yields
1 √
2
(H ⊗ I)(|0 ψ + |1 U |ψ) = 1

2
((|0 + |1 ψ) + (|0 − |1)U |ψ)

|φ = 1

2
|0 (|ψ + U |ψ) + 1

2
|1 (|ψ − U |ψ)

Fig. 27.1 Hadamard test circuits. Left: real part; right: imaginary part

216 27 Expectation Value Estimation

Now we analyze the probability of measuring the ancilla qubit in the state |0 :

p(|0) = φ||0 0||φ

= 1

2
0| ψ | + ψ |U † + 1

2
|1 ψ | − U † ψ | (|0 0 |)1

2
|0 (|ψ + U |ψ)

+1

2
|1 (|ψ − U |ψ)

= 1

4
0| ψ | + ψ |U † 1

4
|0 (|ψ + U |ψ)

= 1

4
ψ | + ψ |U † (|ψ + U |ψ)

= 1

4
ψ ||ψ + ψ |U †U |ψ + ψ |U |ψ + ψ |U † |ψ

= 1

4
(2 + 2Re ψ |U |ψ)

Using the same process, for the second circuit one arrives at the final result
p(|0) = 1

2 + 1
2 Im(ψ |U |ψ).

Like the Pauli diagonalization method, the sampling complexity of this method
scales as O 1 2 .

We now provide an example code performing the Hadamard test on a unitary
operator. The operator in this example is the S gate, with the matrix representation

S = 1 0
0 i

This operator has been chosen for this example since the expectation values are
purely real and imaginary for the quantum states |0 and |1 , i.e.,

0|S|0 = 1

1|S|1 = i

In our example, we will rotate the state |0 toward the state |1 and back to |0
in increments using a rotation about Y . This can be achieved using the RY (θ) gate
which has a matrix representation

RY (θ) = cos θ − sin θ
sin θ cos θ

In summary, we will compute the expectation value

ψθ |S|ψθ 0|RY (θ)†SRY (θ)| 0
using the Hadamard test and compare it with values computed classically. The
results are plotted in Fig. 27.2:

Hadamard Test 217

Fig. 27.2 Results of Hadamard test example code

#!/usr/bin/python3

import numpy as np

import matplotlib.pyplot as plt

from qiskit import QuantumCircuit, QuantumRegister, ClassicalReg-

ister

from qiskit.primitives import StatevectorSampler

from qiskit.circuit.library import SGate

from qiskit.circuit import Parameter

Since we will be executing this circuit for various alpha values

define alpha as a parameter

alpha = Parameter(’alpha’)
sweeps = 20
_alpha = np.linspace(0,np.pi*2, sweeps)

params = np.vstack([_alpha]).T

Number of shots to estimate values

shots1 = 1000
shots2 = 100_000

Set up classical and quantum registers

qregister = QuantumRegister(2)

218 27 Expectation Value Estimation

cregister = ClassicalRegister(1,’classical’)

Create Hadamard test circuit for real part

re_circuit = QuantumCircuit(qregister,cregister)
re_circuit.ry(alpha,1) # Prepare |psi_alpha> state

re_circuit.h(0)

re_circuit.append(SGate().control(),[0,1])

re_circuit.h(0)

re_circuit.measure(0,0)

re_circuit.draw()

Create Hadamard test circuit for imaginary part

im_circuit = QuantumCircuit(qregister,cregister)
im_circuit.ry(alpha,1) # Prepare |psi_alpha> state

im_circuit.h(0)

im_circuit.append(SGate().inverse(),[0])

im_circuit.append(SGate().control(),[0,1])

im_circuit.h(0)

im_circuit.measure(0,0)

im_circuit.draw()

Sample circuits over various alpha values

sampler = StatevectorSampler()
Define primitive unified blocks for real and imaginary circuits

pub1 = (re_circuit, params)

pub2 = (im_circuit, params)

Run two jobs with different numbers of shots

job1 = sampler.run([pub1, pub2],shots=shots1)

job2 = sampler.run([pub1, pub2],shots=shots2)

Extract p(0) from results for real and imaginary circuits

re1 = [(job1.result()[0].data.classical.get_counts(i)[’0’]/

shots1 * 2 - 1) for i in range(sweeps)]

im1 = [(job1.result()[1].data.classical.get_counts(i)[’0’]/

shots1 * 2 - 1) for i in range(sweeps)]

re2 = [(job2.result()[0].data.classical.get_counts(i)[’0’]/

shots2 * 2 - 1) for i in range(sweeps)]

im2 = [(job2.result()[1].data.classical.get_counts(i)[’0’]/

shots2 * 2 - 1) for i in range(sweeps)]

Get the exact solution we expect to verify results

Function returning Ry matrix for a theta value

def ry_matrix(theta):

return np.array([[np.cos(theta/2), -np.sin(theta/

2)],[np.sin(theta/2), np.cos(theta/2)]])

Quantum Amplitude Estimation 219

Create statevectors for various theta values

psi_theta = []
for theta in _alpha:

psi_theta.append(ry_matrix(theta)@[[1],[0]])

Compute expectation values using matrix-vector multiplication

s_matrix = [[1,0],[0,1j]]
evs = []
for psi in psi_theta:

evs.append(psi.T.conj() @ s_matrix @ psi)

Plot results

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, sharey=True)

plt.xlabel(r’α’)

ax1.set_ylabel(r’$Re(\langle \psi_\alpha | S | \psi_\alpha \ran-

gle)$’)

ax2.set_ylabel(r’$Im(\langle \psi_\alpha | S | \psi_\alpha \ran-

gle)$’)

ax1.scatter(_alpha,re1,color=’r’,marker=’o’)

ax2.scatter(_alpha,im1,color=’r’,marker=’o’)

ax1.scatter(_alpha,re2,color=’b’,marker=’x’)

ax2.scatter(_alpha,im2,color=’b’,marker=’x’)

ax1.plot(_alpha,np.array(np.real(evs)).flatten(),color=’k’)

ax2.plot(_alpha,np.array(np.imag(evs)).flatten(),color=’k’)

ax1.legend([’1000 shots’,’100,000 shots’,’Exact’],loc=9)

plt.show()

Quantum Amplitude Estimation

Unlike the previous methods, the sample complexity of the amplitude estimation
method scales as O(1), achieving the so-called Heisenberg limit—the optimal
scaling permitted in general by quantum mechanics.

To motivate the method, let’s first revisit the Hadamard test from the previous
section. Denoting a unitary that prepares |ψ as Uψ , and the circuit in (without
the measurement operation) as UHad , we combine the two to define

A = UHad U ψ

Applying this operation to the state |0 0|⊗n we get

A|0 0|⊗n = |φ =
1

2
|0 (|ψ + U |ψ) + 1

2
|1 (|ψ − U |ψ)

220 27 Expectation Value Estimation

This state has a clear separation of “good” and “bad” states and can be restated
as a sum

|φ = φgood + | φbad

such that

ψgood |ψ = ψgood |ψbad = √
p

ψbad |ψ = ψbad |ψbad = 1 − p

where φgood = |0 · and |φbad |1 .
Using the amplitude estimation procedure outlined in Chap. 24, Amplitude

Amplification and Estimation., we may estimate p (and by extension 1
2 +

1
2 Re(ψ |U |ψ)) up to precision ε with a complexity of O(1).

The amplitude estimation procedure requires the construction of the reflection
operator Rgood . Recall that the amplitude amplification procedure requires marking
the good states and the |0 0 ⊗n state with a −ve sign, i.e., the operators Sgood and
S0, respectively, need to be constructed.

For this problem we see a clear separation between the good and bad states from
the ancilla qubit. This boils down to marking |0 · with a −ve sign. Therefore,
we may construct the operator Sgood as

S|φ |φ = (XZX) ⊗ (I)⊗n |φ = −1

2
|0 (|ψ + U |ψ) + 1

2
|1 (|ψ − U |ψ)

The construction of S0 is provided in Chap. 24: Amplitude Amplification and
Estimation. Using the standard approach of phase estimation, we can now estimate
1
2 + 1

2 Re(ψ |U |ψ)) up to precision . As shown in the previous section on the
Hadamard test, we can extend this method to estimate 1

2 + 1
2 Im(ψ |U |ψ), com-

pletely determining the expectation value. This procedure has an overall sampling
complexity of O(1) and circuit depth O(1). This leads to an overall complexity
of O(1), which is optimal and is known as the Heisenberg limit.

SWAP Test

In this chapter, we have covered various techniques for computing expectation
values of the form ψ |H |ψ . In some cases, however, we may be interested in
computing the overlap between two quantum states:

ψ |φ

SWAP Test 221

If the state preparation routines Uψ and Uφ are known, one can compute the
overlap using the Hadamard test by estimating the quantity:

0|U †
ψ Uphi|0

Another convenient way to estimate this overlap is to use a slightly modified
version of the Hadamard test, known as either a Hadamard overlap test or a SWAP
test. To build an intuition for this operation, consider two quantum registers, each
containing n qubits.

|ψ φ

Applying the SWAP gate (or more precisely, a sequence of pairwise SWAPs)
exchanges the content of the two registers:

USWAP|ψ φ = |φ ψ

We now apply the Hadamard test to this unitary operator USWAP , treating it as
the controlled operation. This measures the expectation value:

ψ φ|USWAP|ψ φ = ψ φ||φ ψ = ψ |φ 2

Note that this yields the modulo squared value of the desired expectation value
(and does not have an imaginary part), unlike the Hadamard test.

The circuit for the SWAP test is given in Fig. 27.3.
Note that the SWAP test may be extended to measure expectation values of the

form

ψ |U |φ

Fig. 27.3 Quantum circuit
for the SWAP test

222 27 Expectation Value Estimation

This can be achieved by performing a SWAP test of the form

ψ φ|(U ⊗ U)USWAP|ψ φ

ψ φ|(U ⊗ U)|φ ψ

ψ |U |φ 2

References

1. B. Reggio, N. Butt, A. Lytle, P. Draper, Fast partitioning of pauli strings into commuting families
for optimal expectation value measurements of dense operators. Phys. Rev. A 110(2), 022606
(2024). https://doi.org/10.1103/PhysRevA.110.022606

2. M. Kohda, R. Imai, K. Kanno, K. Mitarai, W. Mizukami, Y.O. Nakagawa, Quantum expectation-
value estimation by computational basis sampling. Phys. Rev. Res. 4(3), 033173 (2022). https://
doi.org/10.1103/PhysRevResearch.4.033173

https://doi.org/10.1103/PhysRevA.110.022606
https://doi.org/10.1103/PhysRevResearch.4.033173
https://doi.org/10.1103/PhysRevResearch.4.033173

28Hamiltonian Simulation Techniques

Hamiltonian simulation is the task of approximating the unitary operator U ≈
e−iHt acting on a quantum state, where H is a Hermitian matrix and thus U is uni-
tary. This subroutine is fundamental in quantum computing, with applications in
quantum chemistry, condensed matter physics, and as a core routine in algorithms
such as the HHL quantum linear system algorithm [1]. For quantum chemistry
problems, the Jordan–Wigner [2] or Bravyi–Kitaev [3] transformations can be
used to map the second quantized operators of an atom or molecule (a Fermionic
Hamiltonian) to qubit operators and unitary operations of quantum computers [4].

Hamiltonian simulation encodes the time evolution of a quantum state governed
by the Schrödinger equation:

d

dt
| (t) = −iH (t)| (t)

where the Planck constant is absorbed into the Hamiltonian H (t). For time-
independent H , the solution is

| (t) = e−iHt | (0) .

Thus, simulating a closed, time-independent quantum system is equivalent to
solving a homogeneous first-order system of ordinary differential equations.

Several methods exist for Hamiltonian simulation, each suited to different
settings and resource constraints. The most important approaches are product
formulas, Taylor series expansions using linear combinations of unitaries, and
quantum signal processing. These techniques offer a range of trade-offs in terms
of efficiency, implementation overhead, and error scaling.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_28

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_28&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_28

224 28 Hamiltonian Simulation Techniques

The Hamiltonian simulation problem for closed quantum systems is thus
formally solved by the Schrodinger equation, which is a homogeneous sys-
tem of first-order differential equations. The first quantum algorithm for this
problem was proposed by [5] using the Trotter method. Subsequent work
improved the query complexity to O d2 Hmax t log d2 Hmax by using
a linear combination of unitaries arising from a truncated Taylor series [6].
The current state-of-the-art is quantum signal processing [7] which achieves
a query complexity of O tdHmax + log 1

ε / log log 1 for d -sparse oracles,
or O t H + + log 1 / log log 1 with block-encoded oracles. Additional
approaches, such as randomized evolution methods [8, 9], have also been devel-
oped.

Trotter Methods

The Hamiltonian simulation problem is relatively straightforward to solve using
Trotter methods. This requires decomposing the Hamiltonian into a sum of easily
exponentiated summands Hj:

H =
j
H j

These summands Hj are often chosen to be Pauli strings, since various physical
Hamiltonians can be expressed in this form. This decomposition can be used in
various Trotter formulas to obtain an approximation of e−iHt . The order of the
Trotter formula impacts the simulation errors. Grouping commuting Pauli strings
often leads to lower error rates. Trotter methods are discussed in detail in Chap. 21:
Trotterization.

Taylor Series Approximation

The Taylor series approach approximates a matrix exponential with a matrix
polynomial, which can be implemented as a sum of monomials using the lin-
ear combination of unitaries (LCU) technique. Since U = e−iHt is analytic, it can
be approximated by a truncated Taylor series. This method starts by decomposing
H as a sum of unitaries Hl [10], similar to the product formula approach:

U = e−iHt = e−iHt/r
r = (U r)r

where

Ur ≈ Ûr =
K

k=0

L

l1,...,lk=1

(−it/r)k

k! αl1 . . . αlk Hl1 . . .Hlk .

Quantum Signal Processing 225

Choosing K = O log()
log log()

achieves precision U − Ûr
r

2
≤ , yield-

ing exponential improvement over Trotter methods. If Hl are Pauli strings, their
products Hl1 . . .Hlk remain unitary. Therefore, the double summation may be
implemented using the LCU subroutine, which requires ancilla qubits and has
a non-zero probability of failure. We note that if the LCU subroutine is imple-
menting (approximately) unitary operations its success probability can be boosted
to O(1) using a subroutine known as Oblivious Amplitude Amplification [11],
which—unlike regular amplitude amplification—boosts amplitudes linearly rather
than quadratically.

The overall algorithm simulates a d -sparse Hamiltonian H for time t to a pre-

cision of ε with O τ log2()
log log()

queries to H , where τ = d2 Hmax t, which is

near-optimal in time. However, this approach requires additional ancilla qubits and
a large number of controlled operations. The quantum signal processing method,
presented in the next section, requires significantly fewer ancillae and controlled
operations. Neither method is practical on pre-fault-tolerant quantum computers.

Quantum Signal Processing

The quantum signal processing (QSP) method also approximates a matrix expo-
nential with a matrix polynomial, but instead of summing monomial terms, it uses
the QSP framework, requiring only two additional ancilla qubits. QSP achieves
optimal scaling by simulating a d -sparse Hamiltonian for time t with error using

O td Hmax
log(1)

log log(1) queries to H [7].

The method employs a complex polynomial approximation of e−iHt . By Euler’s
formula,

e−iHt = cos(iHt) − sin (iHt)

cos(iHt) and sin(iHt) are -approximated using the Jacobi–Anger expansion:

cos(xt) ≈ Pcos(x) = J0(t) + 2
k

k=1
(−1)kJ2k (t) T2k(x)

sin(xt) ≈ Psin(x) = 2
k

k=0
(−1)kJ2k+1(t)T2k+ 1(x)

where Ji(x) is the ith order Bessel function and Ti(x) is the ith Chebyshev
polynomial of the first kind with a choice of k = 1

2 r
e
2 |t|, 5 4 . Implement-

ing these polynomials using QSP requires choosing a truncation error of ε/4
and rescaling by a factor of 1

1+ 4 to ensure that both Pcos(x) + Psin(x) ≤
1 and Pcos(x) + Psin(x) − eix ≤ . This approach achieves optimal scal-
ing in t by simulating a d -sparse Hamiltonian for time t with error ε using
O td Hmax

log(1)
log log(1) queries to H [7].

226 28 Hamiltonian Simulation Techniques

Since the QSP implementation of cos(iHt) and sin(iHt) is valid for t ≥ 0 and
positive-definite H , more general cases can be handled by using block-encoding of
H and defining H+ = 12 (H /α + I), where α is the subnormalization factor of the
block encoding. The operator H+ is positive-definite and the evolution of e−2iH+αt

is equivalent to e−iHt up to a global phase factor.
The techniques outlined in this chapter are categorized as digital Hamilto-

nian simulation, since they realize the action of the Hamiltonian as a sequence
of discrete steps. Analog methods directly map the Hamiltonian to an equiva-
lent physical system. These methods are not generally applicable to gate-based
quantum computers and are beyond the scope of this book.

We discuss the solution of non-unitary systems of ordinary differential equa-
tions in more detail in Chap. 32, Quantum Ordinary Differential Equation Algo-
rithms: Block-Matrix Algorithms, and Chap. 33, Quantum Ordinary Differential
Equation Algorithms: Time-Marching Algorithms.

The no-fast-forwarding theorem places a lower bound on the asymptotic com-
plexity of Hamiltonian simulation, establishing that Hamiltonian simulation cannot
be performed in sublinear time in general. The proxy problem for this proof is the
problem of computing the parity of a string of bits [12].

Hamiltonian simulation has great potential for speeding up scientific and
engineering computations. Homogeneous linear systems of differential equations
can be transformed into a system of first-order differential equations using a
transformation known as “Schrodingerization,” which can then be solved using
Hamiltonian simulation techniques. The speedups for quantum chemistry itself
can be immense, allowing ab initio computation of larger systems with higher
accuracy. While density functional theory (DFT) is a widely used semi-empirical
method for ab initio calculations, it relies on controlled approximations and usually
can only provide ground-state solutions, limiting its application. Direct quantum
simulations can provide more accurate results and can be used for multiscale mod-
eling to unlock the interesting physics arising from the excited states of molecules
and condensed matter, such as crystals.

To realize the exponential speedups offered by quantum computers for Hamil-
tonian simulation, efficient implementations of oracles or block-encodings need to
be developed for problems of practical interest. Furthermore, error rates need to
be low and coherence times must be large in quantum devices to extract useful
results.

References

1. A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103(15), 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

2. P. Jordan, E. Wigner, Über das Paulische äquivalenzverbot. Z. Physik 47(9–10), 631–651
(1928). https://doi.org/10.1007/BF01331938

3. S.B. Bravyi, A.Y. Kitaev, Fermionic quantum computation. Ann. Phys. 298(1), 210–226
(2002). https://doi.org/10.1006/aphy.2002.6254

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254

References 227

4. J.D. Whitfield, J. Biamonte, A. Aspuru-Guzik, Simulation of electronic structure Hamiltoni-
ans using quantum computers. Mol. Phys. 109(5), 735–750 (2011). https://doi.org/10.1080/
00268976.2011.552441

5. C. Coppersmith, An approximate Fourier transform useful in quantum factoring (IBM
Research Division, RC, 19642,1994). https://doi.org/10.48550/arXiv.quant-ph/0201067

6. A.I. Google Quantum et al., Exponential suppression of bit or phase errors with cyclic error
correction. Nature 595(7867), 383–387 (2021). https://doi.org/10.1038/s41586-021-03588-y

7. G.H. Low, I.L. Chuang, Optimal Hamiltonian simulation by quantum signal processing. Phys.
Rev. Lett. 118(1), 010501 (2017). https://doi.org/10.1103/PhysRevLett.118.010501

8. C.-F. Chen, H.-Y. Huang, R. Kueng, J.A. Tropp, Concentration for random product formulas.
PRX Quantum 2(4), 040305 (2021). https://doi.org/10.1103/PRXQuantum.2.040305

9. A.M. Childs, A. Ostrander, Y. Su, Faster quantum simulation by randomization. Quantum 3,
182 (2019). https://doi.org/10.22331/q-2019-09-02-182

10. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Simulating Hamiltonian dynam-
ics with a truncated Taylor series. Phys. Rev. Lett. 114(9), 090502 (2015). https://doi.org/10.
1103/PhysRevLett.114.090502

11. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Exponential improvement in
precision for simulating sparse Hamiltonians, in Proceedings of the Forty-Sixth Annual ACM
Symposium on Theory of Computing, in STOC ’14 (Association for Computing Machinery,
New York, NY, USA, 2014), pp. 283–292. https://doi.org/10.1145/2591796.2591854

12. D.W. Berry, G. Ahokas, R. Cleve, B.C. Sanders, Efficient quantum algorithms for simulating
sparse Hamiltonians. Commun. Math. Phys. 270(2), 359–371 (2007). https://doi.org/10.1007/
s00220-006-0150-x

https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.48550/arXiv.quant-ph/0201067
https://doi.org/10.1038/s41586-021-03588-y
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.1103/PRXQuantum.2.040305
https://doi.org/10.22331/q-2019-09-02-182
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1007/s00220-006-0150-x

29Eigenvalue Problems

The estimation of eigenvalues is a significant application of quantum comput-
ers, with implications for quantum chemistry (ground and excited states and their
energies), materials science, and various problems in physics. Among some of the
well-known algorithms are the Variational Quantum Eigensolver (VQE), quan-
tum Krylov subspace methods, and Quantum Phase Estimation (QPE). VQE and
related variational algorithms are discussed in Chap. 36: Notable Variational Algo-
rithms: VQE, QAOA, and VQLS. QPE has been presented in Chap. 20: Quantum
Phase Estimation. This chapter focuses on quantum Krylov methods for eigenvalue
problems.

Krylov Methods

Consider a problem where a quantum state |ψ0 can be time-evolved by the Hamil-
tonian H as e−iHt . By choosing t = {t0, t1, ..tm} where ti+1 = ti + t, one can
build a Krylov subspace

ψ0|, e−iH t |ψ0 , e−iH 2 t |ψ0 , e−iH 3 t |ψ0 , . . . = |ψ0 , |ψ1 , |ψ2 , |ψ3 , . . .}

Expectation values of the form ψi|H ψj and ψi|ψj are then estimated to form
the generalized eigenvalue problem:

H̃ φi = λiSφi

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_29

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_29&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_29

230 29 Eigenvalue Problems

where

S =

⎛

⎜⎝
ψi|ψi ψi|ψj · · ·
ψj|ψi ψj|ψj

...
. . .

⎞
⎟⎠

and

H̃ =

⎛

⎜⎝
ψ0|H |ψ0 ψ0|H |ψ1 · · ·
ψ1|H |ψ0 ψ1|H |ψ1

...
. . .

⎞
⎟⎠

Note that S and H̃ are symmetric. The elements of S and H̃ may be computed
using techniques presented in Chap. 27: Expectation Value Estimation.

The lowest generalized eigenvalue corresponds to the minimum eigenvalue in
the subspace spanned by {|ψi . However, the generalized eigenvalue problem
arising from this subspace construction method is often ill-conditioned, and a
dynamical mode decomposition (DMD) method has been proposed to improve
numerical stability [1, 2].

In some cases, a good approximation of the relevant subspace may already be
available, and the subspace vectors |ψ1 , . . . can be chosen directly rather than
generated via the Krylov method. More generally, an arbitrary subspace can be
constructed by other means as well.

Approximate eigenvalue estimation and eigenstate preparation are central appli-
cations of quantum computers in physics and chemistry and constitute an active
area of research. Other notable techniques, such as QCELS [3], quantum imaginary
time evolution [4], and sample-based quantum diagonalization [5], are beyond the
scope of this book.

References

1. Y. Shen et al., Estimating eigenenergies from quantum dynamics: a unified noise-resilient
measurement-driven approach (2023). arXiv:2306.01858. https://doi.org/10.48550/arXiv.2306.
01858

2. Y. Shen et al., Efficient measurement-driven eigenenergy estimation with classical shadows
(2024). arXiv:2409.13691. https://doi.org/10.48550/arXiv.2409.13691

3. Z. Ding, L. Lin, Even shorter quantum circuit for phase estimation on early fault-tolerant quan-
tum computers with applications to ground-state energy estimation. PRX Quantum 4(2), 020331
(2023). https://doi.org/10.1103/PRXQuantum.4.020331

4. M. Motta et al., Determining eigenstates and thermal states on a quantum computer using quan-
tum imaginary time evolution. Nat. Phys. 16(2), 205–210 (2020). https://doi.org/10.1038/s41
567-019-0704-4

5. J. Robledo-Moreno et al., Chemistry beyond exact solutions on a quantum-centric supercom-
puter (2024). https://doi.org/10.48550/ARXIV.2405.05068

http://arxiv.org/abs/2306.01858
https://doi.org/10.48550/arXiv.2306.01858
https://doi.org/10.48550/arXiv.2306.01858
http://arxiv.org/abs/2409.13691
https://doi.org/10.48550/arXiv.2409.13691
https://doi.org/10.1103/PRXQuantum.4.020331
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.48550/ARXIV.2405.05068

30Quantum Linear System Algorithms:
Direct Methods

Quantum linear system algorithms (QLSA) are central to the potential utility
of quantum computing for scientific and engineering applications, as linear sys-
tems are ubiquitous in these fields. While classical algorithms for solving an
N -dimensional linear system Ax = b require at least O(N) time to produce the
full solution vector x, many engineering and scientific applications only need a few
specific properties, such as the peak stress in a structure or the lift coefficient of an
airfoil. QLSAs promise to bypass this bottleneck by directly preparing a quantum
state whose amplitudes encode the solution, often in time polylogarithmic in N ,
potentially enabling the efficient extraction of these observables.

In this chapter, we focus on direct QLSAs, outlining the foundational Har-
row–Hassidim–Lloyd (HHL) algorithm [1] and its subsequent refinements—Linear
Combination of Unitaries (LCU) [2], and Quantum Signal Processing (QSP/
QSVT) [3], discussing their underlying assumptions, computational complexity,
and practical limitations.

Formally, QLSAs solve the Quantum Linear System Problem (QLSP) [1] as
follo ws.

Definition (Quantum Linear System Problem) Given a normalized matrix A ∈
C
N× N with A = 1, a vector b ∈ C N , oracle access to the entries of A, and the

ability to prepare a quantum state |b = i bi|i
i bi|i 2

, the task is to prepare a quantum

state |x̃ , such that x̃ − |x 2 ≤ , where |x = i xi|i
i xi|i 2

and x = A−1 b.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_30

231

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_30&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_30

232 30 Quantum Linear System Algorithms: Direct Methods

Table 30.1 A summary of notable QLSAs

Algorithm Complexity Pros Cons Notes

HHL [1]
(2007)

O d2κ2 log(N) 1 ancilla
Short circuit
possible

High error κ2 → κ log κ using
VTAA [4]

LCU [2]
(2017)

O κ2poly log(κN) Many ancillae Low error
Complex
circuit

κ2 → κ log κ using
AA [2]

QSP/QVST
[3]
(2021)

O(κ log(κN)) Few ancillae,
near-optimal
scaling

QSP sequence
required

can be reused

PD-QLSA [5]
(2021)

O
√

κ log(κN) Near-optimal √
κ scaling

classical scaling

Only for SPD
systems

Requires upper
bound on A 2

DAT [6]
(2022)

O(κ log(N)) Optimal κ
scaling

Requires
construction of
a Hamiltonian
for evolution

Notes:

• Most QLSA, including HHL, LCU, and quantum signal processing methods,
require A to be Hermitian, or they rely on an efficient reduction of the general
case to an equivalent Hermitian problem (e.g., using the Hermitian dilation of
A). For non-Hermitian A, this embedding increases the problem size but enables
the use of these algorithms.

• Due to the normalization constraint of quantum states, |x is proportional to the
classical solution x, and its amplitudes encode the solution information. Unlike
classical approaches, the full solution vector is not output; instead, quantum
algorithms enable the efficient extraction of relevant observables or sampling.

Since quantum algorithms can operate on the entire state efficiently, QLSAs
can yield exponential speedups in N for suitable QLSPs [1]. A summary of
these methods is presented in Table 30.1. As discussed here, QLSAs are quan-
tum analogs of direct classical solvers—they do not depend on an initial guess
or leverage problem-specific structure. Quantum iterative methods, which offer
complementary strategies, are addressed in the following chapter.

LCU-Based Methods 233

Fig. 30.1 A quantum circuit demonstrating the HHL algorithm

HHL Algorithm

The Harrow–Hassidim–Lloyd (HHL) algorithm was the first to demonstrate an
exponential advantage in system size for linear systems of equations, with com-
plexity O κ2d2 log(N) where d is the maximum number of non-zero entries in
any row or column of A, and κ is the condition number. HHL leverages Hamilto-
nian simulation to apply controlled e−iAt operations on the input state |b . Since
A and e−iAt share the same eigenvectors, the eigenvalues of e−iAt are kicked back
to the control register via quantum phase estimation. Using the quantum Fourier
transform, eigenvalues are encoded in the amplitudes of the control qubits, and
a controlled rotation on an ancilla is used to invert the eigenvalues. The compu-
tation is then reversed to disentangle the registers, and the ancilla is measured.
Measurement of the ancilla in the desired state indicates a successful solution.

Since the algorithm relies on phase estimation, it suffers from poor scaling
in precision. Variable-time amplitude amplification can improve the scaling with
respect to the condition number κ to linear [4].

An overview schematic of HHL circuit is given in Fig. 30.1.
Given subsequent improvements beyond HHL, we do not discuss them in detail

here; instead, we proceed directly to more advanced algorithms.

LCU-Based Methods

Similar to Taylor series methods discussed for Hamiltonian simulation, one can
approximate the matrix function f (x) = 1

x (since we seek an approximation of
f (A) = A−1) using polynomial or Fourier expansions. However, unlike Hamil-
tonian simulation, which directly approximates a matrix exponential eA, matrix
inversion requires some additional considerations.

First, the matrix must be normalized such that A ≤ 1. This ensures that the
singular values of A lie in the disjoint interval [−1, −1/κ]∪ [1/κ, 1]. This can be
achieved by normalizing the system matrix using an upper bound α ≥ A (note
that α A will require an interval [−1, − A /ακ] ∪ [A /ακ, 1]).

234 30 Quantum Linear System Algorithms: Direct Methods

Second, since limx→0 f (x) → ∞, f (x) must be approximated over a disjoint
interval −1, − 1

κ ∪ 1
κ , 1 . Thus, a standard Taylor series approximation or a

Chebyshev approximation is not sufficient.
Finally, for f (A) = A−1 to hold, A must be Hermitian. In case A is not Her-

mitian, one may use Hermitian dilation to instead solve the equivalent linear
system:

0 A
A† 0

0
x

= b
0

The LCU algorithm [2] instead uses either a Chebyshev polynomial approxi-
mation P(x) = k Tk (x) ≈ 1/x, where Tk are Chebyshev polynomials of the first
kind, or a Fourier approximation G(x) = j eitjx ≈ 1 /x, where tj ∈ R, over the
interval x ∈ IP : [−1, −1/κ] ∪ [1/κ, 1], where κ is the condition number of the
system. A filter function is used to handle the disjoint interval, details of which
can be found in [2].

The matrix polynomial approximation P(A) or Fourier approximation G(A)
is applied to the state |b to obtain the approximate solution A−1b ≈ P(A) b
(or A−1b ≈ G(A) b). Given a desired precision P(x) − 1x max x∈IP ≤ or

G(x) − 1x ≤ , P(x) is a polynomial of degree O(κ log()) and G(x) is a
Fourier expansion with O κ log() terms. The terms Tk (x) can be formed

either using matrix multiplications through qubitization or quantum walks (an
equivalent approach for forming Chebyshev polynomials on gate-based quantum
computers), and G(x) can be formed using Hamiltonian simulation.

However, the application of a linear combination of unitaries incurs addi-
tional overhead in the form of ancilla qubits. The overall algorithm requires

O d κ poly log dκ queries to a sparse access oracle for A and requires

O d κ poly log dκN resources. Although its implementation is rather involved,

the LCU QLSA is a seminal development for QLSAs with exponentially improved
scaling in .

Quantum Signal Processing

Similar to its application in Hamiltonian simulation, the QSP method [3] addresses
the need for matrix function approximation without requiring ancilla qubits. QSP
works by finding a sequence of phase angles , corresponding to the desired poly-
nomial and a block-encoding of the matrix, given bounds on the condition number
κ and the desired precision . The sequence is not specific to the problem and
can be reused for any other problem as long as κnew ≤ κ and new ≤ . Given a
block-encoded oracle for A, the query complexity of the algorithm is O κ log κ ,
and it requires O κ log κN resources.

Quantum Signal Processing 235

For symmetric positive-definite systems, it is possible to achieve the
√

κ scaling
of classical solvers [5]. This is done by first defining the alternative polynomial
approximation Q(y) ≈ y = 1

1−x over the interval y ∈ IQ : [−1, 1/κ], and defin-
ing B = I − ηA where η is chosen s.t. B ≤ 1. Given a desired precision
Q(x) − 1x max x∈IQ ≤ , Q(x) is a polynomial of degree O

√
κ log() . The

matrix polynomial approximation Q(B) is then applied to the quantum state |b .
Below is an example of a QLSA implementation using quantum signal

processing in Qiskit. The code inverts an anti-diagonal matrix A of the form:

A =

⎛

⎜
⎜
⎜
⎜
⎝

1
0.95

. .
.

−0.95
− 1

⎞

⎟
⎟
⎟
⎟
⎠

whose inverse is

A−1 =

⎛

⎜
⎜
⎜
⎜
⎝

−1
−1/0.95

. .
.

1/0.95
1

⎞

⎟
⎟
⎟
⎟
⎠

.

Figure 30.2 shows the agreement of the QSP polynomial with 1/x with ≤
10− 6. The phase factors are obtained from the QSPPACK library:

Fig. 30.2 Output of the example code implementing the QSP QLSA. The code demonstrates the
agreement of the singular values of P(A) ≈ A−1 with x−1

236 30 Quantum Linear System Algorithms: Direct Methods

#!/usr/bin/python3

import qiskit

from qiskit import QuantumCircuit, QuantumRegister

from qiskit import ClassicalRegister

from qiskit.quantum_info.operators import Operator

from qiskit_aer import Aer

import numpy as np

from scipy.linalg import fractional_matrix_power

from scipy.io import loadmat

from copy import deepcopy

from matplotlib import pyplot as plt

Define the linear system:

As an example, solve a matrix with numbers +,- 1...0.05 on the anti-
diagonal,

which is a non-Hermitian matrix

step = 0.05
A = np.diag(np.concatenate((np.arange(-1,0,step),np.arange(step,

1+step,step))))

Take anti-transpose of A to demonstrate the non-Hermitian matrix

case.

A = np.flipud(A)
Save matrix to check againt classical solution later

A_orig = deepcopy(A)
Normalize A. If an upper bound is known, use that instead.

A = A/np.linalg.norm(A)

b = np.ones(np.shape(A)[1])
Turn b into a quantum state

b = b/np.linalg.norm(b,2)
b_orig = deepcopy(b)

Hermitian Dilation: only if A is not Hermitian

if np.any(A != A.conj().T):
A = np.block([

[np.zeros(np.shape(A)),A],

[A.conj().T,np.zeros(np.shape(A))]

])

b = np.block([

b,

np.zeros(np.shape(b))

])

HD = True

Quantum Signal Processing 237

else:

HD = False

The matrix A needs to padded to some 2^n to enable block-encoding

if np.size(A)>1:

A_num_qubits = int(np.ceil(np.log2(np.shape(A)[0])))
padding_size = 2**A_num_qubits - np.shape(A)[0]

if padding_size > 0:

A = np.block([
[A, np.zeros([np.shape(A)[0],padding_size])],

[np.zeros([padding_size,np.shape(A)[0]]),

np.zeros([padding_size,padding_size])]

])

else:

A_num_qubits = 1
padding_size = 1
A = np.array([[A,0],[0,0]])

Similarly, pad b

b = np.pad(b,(0,padding_size))

Define the block-encoding of the matrix A

If you have an efficient circuit to realize U_A (or O_A), use it

here

U_A = np.block([
[A , -fractional_matrix_power(np.eye(np.shape(A)[0]) -

np.linalg.matrix_power(A,2),0.5)],

[fractional_matrix_power(np.eye(np.shape(A)[0]) -

np.linalg.matrix_power(A,2),0.5), A]

])

We also need to get the block-encoding size, i.e. m, used to encode

A in U_A

m = int(np.log2(np.shape(U_A)[0]) - A_num_qubits)

U_A_num_qubits = int(np.log2(np.shape(U_A)[0]))

Create the operator U_A in Qiskit

operatorA = Operator(U_A)
Create the three registers for QSP:

1) 1 Z rotation qubit

2) m block-encoding ancillae

3) register for b

register_1 = QuantumRegister(size = 1, name = ’|0>’)
register_2 = QuantumRegister(size = m, name = ’|0^m>’)

register_3 = QuantumRegister(size = U_A_num_qubits-m, name =
’|\phi>’)

238 30 Quantum Linear System Algorithms: Direct Methods

Create a rotation circuit in the block-encoding basis

def CR_phi_d(phi, d, register_1, register_2):

circuit = QuantumCircuit(register_1,register_2,name = ’CR_(
\phi \tilde {})’.format(d))

circuit.cx(register_2,register_1,ctrl_state=0)

circuit.rz(phi*2, register_1)

Done this way for numerical stability

circuit.z(register_1)

circuit.cx(register_2,register_1,ctrl_state=0)

return circuit

Load QSP angles

These angles can be obtained from the QSPPACK package

phi_angles = np.array(loadmat(’phi_kappa_80_pts_8000_deg_

1999.mat’)).item()[’phi_proc’]

phi_tilde_angles = np.zeros(np.shape(phi_angles))
phase_angles = phi_angles.reshape(phi_angles.shape[0])

Create QSP circuit

QSP_circuit = QuantumCircuit(register_1, register_2, register_3,

name = ’QSP’)
Initialize state |b>. If you have an efficient implementation for

b, it goes here

QSP_circuit.initialize(b,list(reversed(register_3)))

First Hadamard the ancilla qubit since we want Re(P(A))

QSP_circuit.h(register_1)

Note: QSPPACK produces symmetric phase angles, so reversing phase

angles is unnecessary

for d, phi in reversed(list(enumerate(phase_angles))):

QSP_circuit = QSP_circuit.compose(CR_phi_d(phi,d,register_
1,register_2))

if d>(0):

The endianness of the bits matters. Need to change the order

of the bits

if d%2:

QSP_circuit.append(operatorA.adjoint(),list(reversed

(register_3[:])) + register_2[:])
else:

QSP_circuit.append(operatorA,list(reversed(register_3[:]))

+ register_2[:])

Apply the final Hadamard gate

Quantum Signal Processing 239

QSP_circuit.h(register_1)

Account for little vs. big endian

QSP_circuit = QSP_circuit.reverse_bits()

Run statevector simulator

solver=’statevector’

backend = Aer.get_backend(’statevector_simulator’,precision =
"double")

job = backend.run(QSP_circuit, shots=0)

Extract relevant portion of statevector

QSP_statevector = job.result().get_statevector()
if HD:

P_A_b = np.real(QSP_statevector.data[int(b_

orig.shape[0]):(2*b_orig.shape[0])])

else:

P_A_b = np.real(QSP_statevector.data[0:b.shape[0]])
P_A_b = P_A_b/np.linalg.norm(P_A_b)

Get expected result using classical solver

expected_P_A_b = np.linalg.solve(A_orig,b_orig)
expected_P_A_b = expected_P_A_b/np.linalg.norm(expected_P_A_b)

Plot QSP polynomial

x = np.flipud(A_orig).diagonal()
fig, ax1 = plt.subplots()
ax1.set_title(’QSP QLSA’)

ax1.scatter(x,P_A_b/P_A_b[-1],marker=’x’,c=’g’)

ax1.scatter(x,expected_P_A_b/expected_P_A_b[-

1],marker=’o’,facecolors=’none’, edgecolors=’k’)

ax1.set_ylabel(’P(x), 1/x’)

plt.legend([’P(x)’,’1/x’],loc = 2)
ax2 = ax1.twinx()
ax2.plot(x[:x.size//2],np.log10(np.abs((P_A_b[:x.size//

2]-expected_P_A_b[:x.size//2])/expected_P_A_b[-1])),’r’)

ax2.plot(x[x.size//2:],np.log10(np.abs((P_A_b[x.size//

2:]-expected_P_A_b[x.size//2:])/expected_P_A_b[-1])),’r’)

ax2.set_ylim(bottom=-12, top=0)

ax2.set_ylabel(’log10 |P(x)-1/x|’)

plt.legend([’error’],loc = 1)

plt.xlabel(’x’)

plt.show()

240 30 Quantum Linear System Algorithms: Direct Methods

We finally note that optimal scaling in κ has been achieved by Orsucci and
Dunjko [5], with a query complexity of O κ log 1 using the adiabatic theorem.

The linear scaling in κ for general linear systems implies that QLSAs can only
provide an exponential speedup for problems with κ = O(poly logN). Practical
problems of interest rarely exhibit such scaling. To address this, [7] has proposed
a quantum sparse approximate inverse (SPAI) preconditioner, which constructs
the preconditioner by solving a least-squares problem on each row of the matrix.
However, the SPAI preconditioner may be inefficient for many problems [8], and a
complete implementation of the algorithm is unavailable. Alternatively, a circulant
matrix preconditioner has been suggested in [9], but its complexity depends on the
condition number of the preconditioner κ(M) and the product κ M −1A . In the
worst case, κ(M) ≥ κ(A) and κ(M), κ M −1A ≈ √

κ(A). A Laplacian precondi-
tioner has been proposed by Golden et al. [8] for hydrological subsurface flow to

reduce the condition number to at most O
√
N . For certain QLSPs of the form

(A + B)|x = | b with A B , Tong et al. [10] proposed a fast-inversion
procedure, relevant for single-particle Green’s functions in quantum many-body
systems.

Several state-of-the-art quantum algorithms for inhomogeneous ordinary dif-
ferential equations rely on QLSAs as an intermediate step, which enables their
exponential speedups [11, 12]. Numerical solutions of partial differential equa-
tions can greatly benefit from QLSAs if the condition number can be controlled.
An iterative approach has been proposed by Raisuddin and De [13] to manage
the condition number of the systems of equations, with possible application to a
quantum multigrid method or a quantum domain decomposition method. We dis-
cuss quantum algorithms for ODEs and PDEs in Chap. 32, Quantum Ordinary
Differential Equation Algorithms: Block-Matrix Algorithms, Chap. 33, Quan-
tum Ordinary Differential Equation Algorithms: Time-Marching Algorithms, and
Chap. 34, Quantum Partial Differential Equation Algorithms.

Since the QLSA prepares a quantum state encoding the solution, it also raises
the question of computing practically relevant properties of the output. Clader et al.
[7] proposed using QLSAs to compute the electromagnetic scattering cross-section
of an arbitrary target. Montanaro and Pallister [14] noted that while the QLSA pro-
vides exponential speedup in state preparation, extracting classical properties from
the quantum state yields only polynomial speedup for finite element problems,
with the speedup increasing for higher dimensional cases.

A further analysis in [15] compared classical and quantum methods for the
heat equation, showing that direct QLSA application is never faster than classical
algorithms. However, an approach based on amplification and random walks can
yield quadratic speedup for d ≥ 2, and even greater speedup for higher d . The heat
equation is especially relevant since it discretizes the Laplacian operator, which
appears in a broad class of PDEs [16].

References 241

References

1. A.W. Harrow, A. Hassidim, S. Lloyd, Quantum algorithm for linear systems of equations.
Phys. Rev. Lett. 103(15), 150502 (2009). https://doi.org/10.1103/PhysRevLett.103.150502

2. A.M. Childs, R. Kothari, R.D. Somma, Quantum algorithm for systems of linear equations
with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950
(2017). https://doi.org/10.1137/16M1087072

3. A. Gilyén, Y. Su, G.H. Low, N. Wiebe, Quantum singular value transformation and beyond:
exponential improvements for quantum matrix arithmetics, in Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing (ACM, Phoenix, 2019), pp. 193–204.
https://doi.org/10.1145/3313276.3316366

4. A. Ambainis, Variable time amplitude amplification and quantum algorithms for linear alge-
bra problems, in Leibniz International Proceedings in Informatics (Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2012), pp. 636–647. https://doi.org/10.4230/LIPICS.STACS.
2012.636

5. D. Orsucci, V. Dunjko, On solving classes of positive-definite quantum linear systems with
quadratically improved runtime in the condition number. Quantum 5, 573 (2021). https://doi.
org/10.22331/q-2021-11-08-573

6. D. An, L. Lin, Quantum linear system solver based on time-optimal adiabatic quantum com-
puting and quantum approximate optimization algorithm. ACM Trans. Quantum Comput. 3(2),
1–28 (2022). https://doi.org/10.1145/3498331

7. B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm.
Phys. Rev. Lett. 110(25), 250504 (2013). https://doi.org/10.1103/PhysRevLett.110.250504

8. J. Golden, D. O’Malley, H. Viswanathan, Quantum computing and preconditioners for hydro-
logical linear systems. Sci. Rep. 12(1), 22285 (2022). https://doi.org/10.1038/s41598-022-257
27-9

9. C. Shao, H. Xiang, Quantum circulant preconditioner for a linear system of equations. Phys.
Rev. A 98(6), 062321 (2018). https://doi.org/10.1103/PhysRevA.98.062321

10. Y. Tong, D. An, N. Wiebe, L. Lin, Fast inversion, preconditioned quantum linear system
solvers, fast Green’s-function computation, and fast evaluation of matrix functions. Phys. Rev.
A 104(3), 032422 (2021). https://doi.org/10.1103/PhysRevA.104.032422

11. D.W. Berry, High-order quantum algorithm for solving linear differential equations. J. Phys.
A: Math. Theor. 47(10), 105301 (2014). https://doi.org/10.1088/1751-8113/47/10/105301

12. D.W. Berry, A.M. Childs, A. Ostrander, G. Wang, Quantum algorithm for linear differen-
tial equations with exponentially improved dependence on precision. Commun. Math. Phys.
356(3), 1057–1081 (2017). https://doi.org/10.1007/s00220-017-3002-y

13. O.M. Raisuddin, S. De, qRLS: quantum relaxation for linear systems in finite element analysis.
Eng. Comput. (2024). https://doi.org/10.1007/s00366-024-01975-3

14. A. Montanaro, S. Pallister, Quantum algorithms and the finite element method. Phys. Rev. A
93(3), 032324 (2016). https://doi.org/10.1103/PhysRevA.93.032324

15. N. Linden, A. Montanaro, C. Shao, Quantum vs. classical algorithms for solving the heat equa-
tion. Commun. Math. Phys. 395(2), 601–641 (2022). https://doi.org/10.1007/s00220-022-044
42-6

16. D. An, J.-P. Liu, D. Wang, Q. Zhao, A theory of quantum differential equation solvers: limita-
tions and fast-forwarding (2022). https://doi.org/10.48550/ARXIV.2211.05246

https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1137/16M1087072
https://doi.org/10.1145/3313276.3316366
https://doi.org/10.4230/LIPICS.STACS.2012.636
https://doi.org/10.4230/LIPICS.STACS.2012.636
https://doi.org/10.22331/q-2021-11-08-573
https://doi.org/10.22331/q-2021-11-08-573
https://doi.org/10.1145/3498331
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1038/s41598-022-25727-9
https://doi.org/10.1038/s41598-022-25727-9
https://doi.org/10.1103/PhysRevA.98.062321
https://doi.org/10.1103/PhysRevA.104.032422
https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00366-024-01975-3
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1007/s00220-022-04442-6
https://doi.org/10.1007/s00220-022-04442-6
https://doi.org/10.48550/ARXIV.2211.05246

31Quantum Linear System Algorithms:
Iterative Methods

Although the QLSAs outlined in the previous chapter demonstrate an exponential
speedup in N , even the optimal direct QLSA scales linearly with the condition
number κ . The linear scaling in κ implies that exponential speedup is achiev-
able only for systems with κ = O(poly logN). Practical problems of interest
rarely exhibit such scaling. Classical approaches to large-scale linear systems often
exploit prior knowledge through preconditioning or iterative solvers.

A quantum sparse approximate inverse (SPAI) preconditioner was proposed in
[1] to resolve this issue. The approach produces the preconditioner by solving a
least-squares problem on each row of the matrix. However, the SPAI precondi-
tioner can be inefficient for many problems [2], and a complete implementation
remains unavailable. A circulant matrix preconditioner has been proposed by Shao
and Xiang [3], but its complexity depends on the condition number of the pre-
conditioner κ(M) and the product κ M −1A , which in the worst case can satisfy
κ(M) ≥ κ(A) and κ(M), κ M −1A ≈ √

κ(A). A Laplacian preconditioner has
been proposed by Golden et al. [2] for hydrological subsurface flow to reduce the

condition number to at most O
√
N . Tong et al. [4] presented a fast-inversion

procedure to solve QLSPs of the form (A + B)|x = |b where A B , target-
ing applications such as single-particle Green’s functions of quantum many-body
systems.

A promising alternative is to develop iterative quantum algorithms. Opti-
mal classical linear system solvers, such as the multigrid method, can achieve
O N log 1 floating-point operations, independent of κ , o r O log 1 matrix-vector
multiplications. However, classical iterative linear system algorithms often require
nonlinear operations (e.g., computing the L2 norm in the conjugate-gradient
method), which necessitates ancilla qubits and/or measurement in a quantum set-
ting. As a result, many iterative methods are considered challenging for quantum

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_31

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_31&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_31

244 31 Quantum Linear System Algorithms: Iterative Methods

computers. Nevertheless, some iterative algorithms—such as Jacobi, Gauss–Sei-
del, and Richardson iterations—are composed solely of affine linear operations
and are potentially more feasible for quantum implementation. In this chapter, we
review recent progress in developing iterative quantum linear system algorithms.

We note that the variational quantum linear solver may be considered a
hybrid quantum-classical “iterative” solver; however, we discuss it separately in
Chap. 36, Notable Variational Algorithms: VQE, QAOA, and VQLS, alongside
other variational algorithms.

We begin by defining the quantum linear system problem in the iterative setting
as follows.

Definition (Iterative Quantum Linear System Problem) Let A ∈ CN × N be a given
matrix and b ∈ C N a target vector; given any initial vector x(0) ∈ C N such that
Ax(0) − b 2 ≤ 0 for some 0 > 0, and given quantum oracle access to the entries

of A and procedures for preparing the normalized quantum states x(0) = i x
(0)

i |i
x(0)

2

and |b = i bi|i
b 2

, the goal is to output a quantum state x(l) = i x
(l)

i |i
x(l)

2
for some

l, such that Ax(l) − b 2 ≤ l ≤ 0.
For positive-definite linear systems, linear stationary iterations can be used. A

general first-order linear stationary iteration may be defined as the affine linear
operation:

x(l+1) = I − τlC−1A x(l) + τ lC−1b

where C is a left-preconditioning matrix and τl is a parameter of the scheme. For
Richardson iteration, set C = I and τl = ω, giving

x(l+1) = (I − ωA)x(l) + ωb

Convergence requires the spectral radius ρ(R) < 1 where R = (I − ωA). This
can be satisfied by choosing ω < 1

λmax(A) .
We can therefore rewrite this in terms of the block-linear system of equations

framework in Chap. 24. As an example, for two iterations with two copy steps, we
get the linear system:

⎡

⎢⎢
⎢
⎢
⎣

I
−R I

−R I
−I I

−I I

⎤

⎥⎥
⎥
⎥
⎦

⎡

⎢⎢
⎢
⎢
⎣

x(0)

x(1)

x(2)

x(3)

x(4)

⎤

⎥⎥
⎥
⎥
⎦

=

⎡

⎢⎢
⎢
⎢
⎣

x(0)

τb
τb
0
0

⎤

⎥⎥
⎥
⎥
⎦

For l iterations and c copies, we may rewrite the large block matrix as

Ml,c =
l+c

i=0
|i i| ⊗ I −

l

i=1
|i i − 1| ⊗ R −

l+c

i=l+1
|i i − 1| ⊗ I

31 Quantum Linear System Algorithms: Iterative Methods 245

Although this matrix is substantially larger than the original system, its condition
number solely depends on the number of iterations l and copy steps. Furthermore,
the number of copy steps can be chosen to be c = l − 1. With these choices, the
condition number scales linearly with the number of iterations.

Lemma [5] ∀ M ∈ RlN×lN s.t. Mik ∈ RN×N where Mii = I , Mi+1,i = − Ri,

Mji = 0 and ∀ i, j, k ∈ [1, l] ⊂ N where j i, i + 1 and Ri 1 ∀ i

M ≤ 2, M −1 ≤ l

κM ≤ 2 l

This technique has been analyzed by Raisuddin and De [5] to arrive at the
following result for an iterative QLSA as follows.

Theorem Let A be a symmetric positive-semidefinite matrix and Ml,l−1 denote the
block matrix that encodes l linear stationary iterations for the system Ax = b, starting
from the initial guess x(0) . Then, for any ≤ 1 2 , there exists a quantum algorithm
that prepares the normalized quantum state x(l) corresponding to l linear stationary

iterations with an overall complexity O l poly log lN .

This is an exponential improvement over a classical computer in the problem size
N . Naïve application of such iterative methods will require l = O(κ) iterations,
which matches the scaling of direct QLSAs. However, this algorithm is intended to
be a building block for sophisticated iterative methods that leverage the structure of
the problem and utilize linear stationary iterations as a subroutine, e.g., multigrid
methods, domain decomposition, and block-preconditioners.

An iterative quantum linear system problem can be viewed as a gradient descent
problem for the functional

f (x) =
1

2
xT Ax − bT x

Algorithms for gradient descent have been proposed by [6, 7]. In particular,
Kerenidis and Prakash [6] presented a QRAM-based algorithm for gradient descent
on linear systems, with complexity O κ3 in the condition number and O(1) in
precision, along with other parameters.

Second-order linear stationary methods, such as the Chebyshev iteration, offer
quadratic speedup for symmetric positive-definite systems, though no quantum algo-
rithm is known for these methods. Raisuddin and De [8] developed a procedure for
multigrid operations for finite element problems using block-matrix multiplication
(see Chap. 26: Matrix-Vector Multiplications and Affine Linear Operations) to apply
the sequence of affine linear operations. However, the success probability of the
algorithm decreases with increasing problem size or precision demands.

246 31 Quantum Linear System Algorithms: Iterative Methods

Fig. 31.1 Exact converged solutions obtained using classical solvers for the problem solved in this
chapter

Below, we provide code for an iterative QLSA [5] implementing Richardson
iterations for heat transfer problems in 1- and 2-dimensions with various boundary
conditions; see Figs. 31.1 and 31.2 for convergence results.

#!/usr/bin/python3

import qiskit

from qiskit import *

import numpy as np

from scipy.io import loadmat

from scipy.io import savemat

print("Get phase angles from QSPPACK and store them as phi.mat")

print("Run this code by passing problem parameters in the following

format:")

print("python this_code.py problem_number num_qubits_each_

dimension num_iterations")

import sys

print (’argument list’, sys.argv)

problem = int(sys.argv[1])
n = int(sys.argv[2])
l = int(sys.argv[3])

problem = 1
n = 2
l = 2

if problem == 1:
d = 1

NBCs = [[False, False]]

31 Quantum Linear System Algorithms: Iterative Methods 247

Fig. 31.2 Convergence of iterates produced classically and using a quantum iterative linear solver
running on a simulator for the problem solved in this chapter

elif problem == 2:
d = 1
NBCs = [[False, True]]

elif problem == 3:
d = 2
NBCs = [[False, True],[False, False]]

elif problem == 4:

d = 2

248 31 Quantum Linear System Algorithms: Iterative Methods

NBCs = [[False, True],[False, True]]

elif problem == 5:
d = 2
NBCs = [[False, True],[True, True]]

print("problem number: {}".format(problem))

print("boundary conditions: {}".format(NBCs))

print("problem size: {}".format(n))

print("number of iterations {}".format(l))

Load and prep angles

phi_angles = np.array(loadmat(’phi_kappa_80_pts_8000_deg_

1999.mat’)).item()[’phi_proc’]

phase_angles = phi_angles.reshape(phi_angles.shape[0])

########### Functions for C ####################3

def C_i(i,register):

n = register.size
if i<1 or i>(n-1):

print(’WRONG VALUE FOR i !!!!’)

return

Ci = QuantumCircuit(register, name=’C_{}’.format(i))

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for

j in range(1,i+1)]

Ci.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=i,

ctrl_state=’0’*i),register[:i+1])

Ci.mcx(control_qubits=workRegister[:i-1],target_

qubit=workRegister[i-1])

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for

j in reversed(range(1,i+1))]

return Ci

############### Functions for R ###############

def L1_d(register):

n = register.size

Circuit that creates L1 unitary

L1 = QuantumCircuit(n,name=’L1’)

L1.x(0)

return L1

def L2_d(register):

n = register.size

31 Quantum Linear System Algorithms: Iterative Methods 249

L2 = QuantumCircuit(register,name=’L2’)
for j in range(1,n):

L2 = L2.compose(C_i(j,register))

return L2

def L3_d(register,NBC):

n = register.size

L3 = QuantumCircuit(register,name=’L3’)

if not NBC[0]:

L3.x(0)

L3.h(0)

L3.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-

1, ctrl_state=’0’*(n-1)),register[1:]+[register[0]])

L3.h(0)

L3.x(0)

if not NBC[1]:

L3.h(n-1)

L3.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-

1, ctrl_state=’1’*(n-1)),register)

L3.h(n-1)

return L3

def L4_d(register,NBC):

n = register.size

L4 = QuantumCircuit(register,name=’L4’)

Apply -ve sign to the unitary

L4.z(0)

L4.x(0)

L4.z(0)

L4.x(0)

return L4

def R_circuit(n,d,workRegisters,lcuRegister,NBCs,alphas):

Create the Prep Circuit

250 31 Quantum Linear System Algorithms: Iterative Methods

prep = QuantumCircuit(lcuRegister,name=’Prep’)
prep.prepare_state(alphas)

allregisters = []
allregisters.extend(workRegisters)

allregisters.extend([lcuRegister])

blockEncoded = QuantumCircuit(*workRegisters,lcuRegister,name=’R’)

Apply the PREP operation

blockEncoded = blockEncoded.compose(prep,lcuRegister)

Apply the SELECT operation using controlled versions of the

circuits L1-L3

This needs to be done for each dimension!

for i in range(d):

if d>1:

d_string = format(i, ’0{}b’.format(d_size))

else:

d_string = ”

blockEncoded.append(L1_d(workRegisters[i]).control(num_ctrl_

qubits=(d_size+2) ,ctrl_state=d_string+’00’), lcuRegister[:] +
workRegisters[i][:])

blockEncoded.append(L2_d(workRegisters[i]).control(num_ctrl_

qubits=(d_size+2) ,ctrl_state=d_string+’01’), lcuRegister[:] +
workRegisters[i][:])

blockEncoded.append(L3_d(workRegisters[i],NBCs[i]).control(num_

ctrl_qubits=(d_size+2),ctrl_state=d_string+’10’), lcuRegis-

ter[:] + workRegisters[i][:])

blockEncoded.append(L4_d(workRegisters[i],NBCs[i]).control(num_

ctrl_qubits=(d_size+2),ctrl_state=d_string+’11’), lcuRegis-

ter[:] + workRegisters[i][:])

Apply the PREP+ operation

blockEncoded = blockEncoded.compose(prep.inverse(),lcuRegister)

return blockEncoded

######################## Functions for D ##########################

31 Quantum Linear System Algorithms: Iterative Methods 251

def L1_1(register):

n = register.size

Circuit that creates L1 unitary

L1 = QuantumCircuit(n,name=’L1_1’)
L1.x(0)

L1.z(0)

return L1

def L1_2(register):

n = register.size

Circuit that creates L1 unitary

L1 = QuantumCircuit(n,name=’L1_2’)
L1.z(0)

L1.x(0)

L1.z(0)

return L1

def C_i(i,register):

n = register.size
if i<1 or i>(n-1):

print(’WRONG VALUE FOR i !!!!’)

return

Ci = QuantumCircuit(register, name=’C_{}’.format(i))

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for

j in range(1,i+1)]

Ci.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=i,

ctrl_state=’0’*i),register[:i+1])

[Ci.cx(control_qubit=i, target_qubit=(i-j), ctrl_state=’0’) for

j in reversed(range(1,i+1))]

return Ci

def L2_1(register):

n = register.size

L2 = QuantumCircuit(register,name=’L2_1’)
Apply -ve to sign to alternating bits

L2.z(0)

for j in range(1,n):

L2 = L2.compose(C_i(j,register))

252 31 Quantum Linear System Algorithms: Iterative Methods

return L2

def L2_2(register):

n = register.size

L2 = QuantumCircuit(register,name=’L2_2’)
L2.h(n-1)

L2.append(qiskit.circuit.library.MCXGate(num_ctrl_qubits=n-1,

ctrl_state=’1’*(n-1)),register)

L2.h(n-1)

for j in range(1,n):

L2 = L2.compose(C_i(j,register))
L2.z(0)

L2.x(0)

L2.z(0)

L2.x(0)

return L2

def D_circuit(l,indexRegister,lcuRegister,alphas):

Create the Prep Circuit

prep = QuantumCircuit(lcuRegister,name=’Prep’)
prep.prepare_state(alphas)

allregisters = []
allregisters.extend([indexRegister])

allregisters.extend([lcuRegister])

blockEncoded = QuantumCircuit(indexRegister,lcuRegister,name=’D’)

Apply the PREP operation

blockEncoded = blockEncoded.compose(prep,lcuRegister)

Apply the SELECT operation using controlled versions of the

circuits L1_i, L2_i

blockEncoded.append(L1_1(indexRegister).control(num_ctrl_

qubits=(2) ,ctrl_state=’00’), lcuRegister[:] + indexRegister[:])
blockEncoded.append(L1_2(indexRegister).control(num_ctrl_

qubits=(2) ,ctrl_state=’01’), lcuRegister[:] + indexRegister[:])
blockEncoded.append(L2_1(indexRegister).control(num_ctrl_

qubits=(2) ,ctrl_state=’10’), lcuRegister[:] + indexRegister[:])

blockEncoded.append(L2_2(indexRegister).control(num_ctrl_

qubits=(2) ,ctrl_state=’11’), lcuRegister[:] + indexRegister[:])

31 Quantum Linear System Algorithms: Iterative Methods 253

Apply the PREP+ operation

blockEncoded = blockEncoded.compose(prep.inverse(),lcuRegister)

return blockEncoded

################ Functions for QSP Rotation

##################################

def CR_phi_d_efficient(phi, _d, signalReg, lcuRegister_R, lcuReg-

ister_l, lcuRegister_q, circuit):

BE_size = lcuRegister_R.size + lcuRegister_l.size + lcuRegister_
q.size

ctrl_state = ’0’*(BE_size)

circuit.append(qiskit.circuit.library.MCXGate(num_ctrl_

qubits=BE_size, ctrl_state=ctrl_state), lcuRegister_R[:] +
lcuRegister_l[:] + lcuRegister_q[:] + signalReg[:])

circuit.rz(2*phi, signalReg)

circuit.z(signalReg)

circuit.append(qiskit.circuit.library.MCXGate(num_ctrl_

qubits=BE_size, ctrl_state=ctrl_state), lcuRegister_R[:] +
lcuRegister_l[:] + lcuRegister_q[:] + signalReg[:])

return

####################### Construct qRLS Circuit

##############################

d_size = int(np.log2(d))

workRegisters = [QuantumRegister(n,name=’dim {}’.format(i)) for i

in range(d)]

indexRegister = QuantumRegister(l,name=’index’)

alphas_R = np.array([np.sqrt(1+0j), np.sqrt(1+0j),

np.sqrt(0.5+0j), np.sqrt(0.5+0j)]*d)

alphas_R = alphas_R/np.linalg.norm(alphas_R,2)
lcu_size_R = int(np.ceil(np.log2(alphas_R.size)))
lcuRegister_R = QuantumRegister(lcu_size_R,name=’lcu_R’)

R = R_circuit(n,d,workRegisters,lcuRegister_R,NBCs,alphas_R)

alphas_l = np.array([np.sqrt(0.5+0j), np.sqrt(0.5+0j),

np.sqrt(0.5+0j), np.sqrt(0.5+0j)])

alphas_l = alphas_l/np.linalg.norm(alphas_l,2)

254 31 Quantum Linear System Algorithms: Iterative Methods

lcu_size_l = int(np.ceil(np.log2(alphas_l.size)))
lcuRegister_l = QuantumRegister(lcu_size_l,name=’lcu_l’)
D = D_circuit(l,indexRegister,lcuRegister_l,alphas_l)

alphas_q = np.array([np.sqrt(1+0j), np.sqrt(3+0j)])

alphas_q = alphas_q/np.linalg.norm(alphas_q,2)
lcu_size_q = int(np.ceil(np.log2(alphas_q.size)))
lcuRegister_q = QuantumRegister(lcu_size_q,name=’lcu_q’)

R = R_circuit(n,d,workRegisters,lcuRegister_R,NBCs,alphas_R)
D = D_circuit(l,indexRegister,lcuRegister_l,alphas_l)
R = R.decompose(reps=6)
D = D.decompose(reps=6)

prep = QuantumCircuit(lcuRegister_q,name=’Prep’)
prep.prepare_state(alphas_q)

qRLS_circuit = QuantumCircuit(*workRegisters,indexRegister,lcuRegister_
R,lcuRegister_l,lcuRegister_q,name=’qRLS’)

qRLS_circuit = qRLS_circuit.compose(prep,lcuRegister_q)
qRLS_circuit.append(R.control(num_ctrl_qubits=(1) ,ctrl_

state=’1’), lcuRegister_q[:] + [_x for _xs in workRegisters for _x

in _xs] + lcuRegister_R[:])
qRLS_circuit.append(D.control(num_ctrl_qubits=(1) ,ctrl_

state=’1’), lcuRegister_q[:] + indexRegister[:] + lcuRegister_
l[:])

qRLS_circuit = qRLS_circuit.compose(prep.inverse(),lcuRegister_
q)

U_A = qRLS_circuit
U_A_i = U_A.inverse()

signalRegister = QuantumRegister(1,name=’QSP signal’)

QSP_circuit = QuantumCircuit(*workRegisters,indexRegister,lcuRegister_

R,lcuRegister_l,lcuRegister_q,signalRegister,name=’QSP_

Solver’)

Prepare initial state

initial_state = np.ones(2**l)

initial_state[0] = 0

initial_state = initial_state/np.linalg.norm(initial_state,2)

QSP_circuit.append(qiskit.circuit.library.StatePreparation(initial_

state),indexRegister)

31 Quantum Linear System Algorithms: Iterative Methods 255

for _i in workRegisters:

QSP_circuit.h(_i)

####################### Start QSP Sequence

#######################

First thing is to Hadamard the signal qubit since we want Re(P(A))

QSP_circuit.h(signalRegister)

for _d, phi in reversed(list(enumerate(phase_angles[:]))):

CR_phi_d_efficient(phi,_d,signalRegister,lcuRegister_

R,lcuRegister_l,lcuRegister_q,QSP_circuit)

if _d>(0):

if _d%2:

for _ci in U_A_i.data:

QSP_circuit.append(_ci)

else:

for _ci in U_A.data:

QSP_circuit.append(_ci)

Apply the final Hadamard gate

Q SP_circuit.h(signalRegister)

####################### Simulate Circuit #######################

print(’running simulation’)

from qiskit_aer import Aer

device = ’CPU’
backend = Aer.get_backend(’statevector_simulator’,

device=device, precision=’double’)

print(’transpiling circuit’)

transpiled_QSP_circuit = qiskit.transpile(QSP_

circuit.decompose(reps=3))

print(’completed transpilation, starting job’)

result = backend.run(transpiled_QSP_circuit,shots=0).result()

statevector = result.get_statevector()
final_output = np.array(statevector)[0:(2**(l)*2**(n*d))]
iterates = final_output/np.linalg.norm(final_output,2)

####################### Calculate classical iterates

#######################

R = [np.zeros((2**n,2**n)) for _i in NBCs]

for _R in R:

256 31 Quantum Linear System Algorithms: Iterative Methods

i, j = np.indices(_R.shape)
_R[i==j-1] = 0.5
_R[i==j+1] = 0.5

for _i,_R in zip(NBCs,R):

if _i[0]:

_R[0,0] = 0.5
if _i[1]:

_R[-1,-1] = 0.5
R_full = np.zeros((2**(n*d),2**(n*d)))
for _i,_R in enumerate(reversed(R)):

if _i == 0:
_Ri = _R

else:

_Ri = np.eye(2**n)
for _j in range(1,d):

if _j==_i:

_Ri = np.kron(_Ri,_R)
else:

_Ri = np.kron(_Ri,np.eye(2**n))
R_full += _Ri

R_full = R_full/d

classical_iterates = [np.zeros(R_full.shape[0]) for _i in

range(2**l)]

f = np.ones(R_full.shape[0])
for _i in range(2**l - 1):

classical_iterates[_i+1] = np.matmul(R_full,classical_

iterates[_i]) + f
classical_iterates = np.concatenate(classical_iterates)
classical_iterates = classical_iterates/np.linalg.norm(classical_

iterates,2)

####################### Calculate the exact solution

#######################

A = [np.zeros((2**n,2**n)) for _i in NBCs]

for _A in A:

i, j = np.indices(_A.shape)
_A[i==j-1] = -1

_A[i==j+1] = -1

_A[i==j] = 2

for _i,_A in zip(NBCs,A):

if _i[0]:

_A[0,0] = 1

if _i[1]:

_A[-1,-1] = 1

31 Quantum Linear System Algorithms: Iterative Methods 257

A_full = np.zeros((2**(n*d),2**(n*d)))
for _i,_A in enumerate(reversed(A)):

if _i == 0:
_Ai = _A

else:

_Ai = np.eye(2**n)
for _j in range(1,d):

if _j==_i:

_Ai = np.kron(_Ai,_A)
else:

_Ai = np.kron(_Ai,np.eye(2**n))
A_full += _Ai

f = np.ones(R_full.shape[0])
exact_sol = np.linalg.solve(A_full,f)
exact_sol = exact_sol/np.linalg.norm(exact_sol,2)

####################### Calculate the iterate errors

#######################

quantum_convergence = []
for _i in range(1,2**l):

quantum_convergence.append(np.linalg.norm(exact_

sol - iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]/

np.linalg.norm(iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)],2))

)

classical_convergence = []
for _i in range(1,2**l):

classical_convergence.append(np.linalg.norm(exact_

sol - classical_iterates[(2**(n*d))*(_i):(2**(n*d))*(_

i+1)]/np.linalg.norm(classical_iterates[(2**(n*d))*(_

i):(2**(n*d))*(_i+1)],2)))

####################### Calculate the QSP errors

#######################

QSP_errors_full = []
for _i in range(2**l):

QSP_errors_full.append(np.linalg.norm((classical_

iterates[(2**(n*d))*(_i):(2**(n*d))*(_i+1)]) - iterates[_

i*(2**(n*d)):(_i+1)*(2**(n*d))], 2))

####################### Save all useful variables

#######################

mdic = {"dimensions":d, "n":n, "l":l, "BCs":NBCs, "raw_

statevector": final_output, "classical_solution":classical_

258 31 Quantum Linear System Algorithms: Iterative Methods

iterates, "QSP_solution":iterates, "QSP_Errors":QSP_errors_

full, "classical":classical_convergence, "quantum":quantum_

convergence}

savemat("output_problem_{}_n_{}_l_{}.mat".format(problem,n,l),

mdic)

print("completed simulation with parameters:")

print("problem number: {}".format(problem))

print("boundary conditions: {}".format(NBCs))

print("problem size: {}".format(n))

print("number of iterations {}".format(l))

print(’\n\nsaved output\n\n’)

In summary, iterative quantum linear system algorithms are a recent and active
area of quantum computing research. While methods such as the qRLS demon-
strate the feasibility of quantum approaches for solving linear systems, their
applicability is presently limited to symmetric positive-definite matrices due to
convergence requirements and the structure of quantum algorithmic primitives.
Key challenges remain in extending these techniques to more general matrix
classes, improving convergence for ill-conditioned or indefinite systems, and
developing robust quantum preconditioners. Addressing these limitations will be
essential for advancing the practical impact and applicability of iterative quantum
algorithms in scientific and engineering domains.

References

1. B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm. Phys.
Rev. Lett. 110(25), 250504 (2013). https://doi.org/10.1103/PhysRevLett.110.250504

2. J. Golden, D. O’Malley, H. Viswanathan, Quantum computing and preconditioners for hydro-
logical linear systems. Sci. Rep. 12(1), 22285 (2022). https://doi.org/10.1038/s41598-022-257
27-9

3. C. Shao, H. Xiang, Quantum circulant preconditioner for a linear system of equations. Phys.
Rev. A 98(6), 062321 (2018). https://doi.org/10.1103/PhysRevA.98.062321

4. Y. Tong, D. An, N. Wiebe, L. Lin, Fast inversion, preconditioned quantum linear system solvers,
fast Green’s-function computation, and fast evaluation of matrix functions. Phys. Rev. A 104(3),
032422 (2021). https://doi.org/10.1103/PhysRevA.104.032422

5. O.M. Raisuddin, S. De, qRLS: quantum relaxation for linear systems in finite element analysis.
Eng. Comput. (2024). https://doi.org/10.1007/s00366-024-01975-3

6. I. Kerenidis, A. Prakash, Quantum gradient descent for linear systems and least squares. Phys.
Rev. A 101(2), 022316 (2020). https://doi.org/10.1103/PhysRevA.101.022316

7. P. Rebentrost, M. Schuld, L. Wossnig, F. Petruccione, S. Lloyd, Quantum gradient descent and
Newton’s method for constrained polynomial optimization. New J. Phys. 21(7), 073023 (2019).
https://doi.org/10.1088/1367-2630/ab2a9e

8. O.M. Raisuddin, S. De, Quantum multigrid algorithm for finite element problems (2024).
https://doi.org/10.48550/ARXIV.2404.07466

https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1038/s41598-022-25727-9
https://doi.org/10.1038/s41598-022-25727-9
https://doi.org/10.1103/PhysRevA.98.062321
https://doi.org/10.1103/PhysRevA.104.032422
https://doi.org/10.1007/s00366-024-01975-3
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1088/1367-2630/ab2a9e
https://doi.org/10.48550/ARXIV.2404.07466

32Quantum Ordinary Differential
Equation Algorithms: Block-Matrix
Algorithms

Systems of ordinary differential equations (ODEs) frequently arise in scientific
and engineering computations. For many problems of practical interest, the sys-
tems may be high-dimensional and large enough to be computationally expensive,
to the extent that they become large enough to be computationally prohibitive
or intractable. The capability of quantum computers to process vectors in expo-
nentially large spaces is a promising solution to alleviate computational resource
concerns for the numerical solution of large-scale differential equation problems.
In this chapter we discuss the block-matrix approach for quantum ordinary differ-
ential equation algorithms. In the next chapter, the more nascent time-marching
approach is discussed.

For inhomogeneous linear systems of ODEs, the first efficient quantum algo-
rithm was developed by Berry [1] by using a linear multistep method for time
discretization. The recursive relation for discrete time-stepping is encoded as a
block-linear system, as discussed in Chap. 26: Matrix-Vector Multiplications and
Affine Linear Operations. The scaling was subsequently improved in [2] to achieve
quasi-linear scaling in t and exponentially improved precision by using a Taylor
series time discretization instead of a linear multistep formula. A spectral time
discretization approach was provided by Childs and Liu [3], which can also accom-
modate the case of time-dependent A(t). We note that all these algorithms require
that A have non-positive real parts of its eigenvalues, i.e., only decaying solutions
in the 2-norm are tractable. The results of [1–3] were further improved and general-
ized by Krovi [4], with exponentially improved bounds on error for ill-conditioned
diagonalizable linear ODE systems, non-diagonalizable systems of ODEs, and also
provided an improved version of the algorithm provided by Liu et al. [5] for Car-
leman linearized nonlinear PDEs. An et al. [6] developed a theory for the overhead
in the quantum complexity of solving homogeneous ODEs, identifying sources of

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_32

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_32&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_32

260 32 Quantum Ordinary Differential Equation Algorithms: Block-Matrix …

“non-quantumness” that increase overhead compared to quantum dynamics simu-
lation. Specifically, non-unique real parts of the eigenvalues can lead to exponential
overhead in the worst case, while the non-orthogonality of eigenvectors, measured
by μ(A) = AA† − A†A

1/2
, incurs a linear overhead in μ(A).

For simplicity, we outline the method of [2] as an example, solving a first-order
time-independent initial value problem for the ODE system

dx

dt
= Ax + b

with initial condition x(0), where A and b are time-independent.
This ODE system has an exact solution

x(t) = eAtx(0) + eAt − I A−1b

eAt and eAt − I A− 1 are approximated using Taylor series expansions with k + 1
and k terms, respectively:

e(z) ≈ Tk (z) =
k

j=0

zj

j! , z
−1 ≈ Sk (z) =

k

j=1

zj−1

j!

A time step h ≤ 1
A is chosen, yielding the recurrence

xt = Tk (Ah)xt−1 + Sk (Ah)b

where x0 = x(0) and xt ≈ x(t) such that xt
xt

− x(t)
x(t) ≤ . This recurrence

relation involves powers of Ah and their sums, making the block-linear systems
slightly more complex for this problem, compared to the much simpler sequence of
linear operations discussed in Chap. 26: Matrix-Vector Multiplications and Affine
Linear Operations. p copy steps are also appended to boost the success probability,
which are also discussed in Chap. 26: Matrix-Vector Multiplications and Affine
Linear Operations. The block-linear system is of the form:

MA,h,k,m,p|x = |init

32 Quantum Ordinary Differential Equation Algorithms: Block-Matrix … 261

where

MA,h,k,m,p =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

I
−Ah I

−Ah
2 I

.
−Ah

k I
−I −I · · · −I −I I

−Ah I
.

−Ah
k I

−I · · · −I −I I
−I I

.
−I I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

|x =
m−1

i=0

k

j=0

|i(k + 1) + j xi,j +
p

j=0

|m(k + 1) + j xm,j

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0,0
x0,1
x0,2
...

x0,k
x1,0
x1,1
...

xm−1,k

xm,0

xm,1
...

xm,p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0
Ahx0

(Ah)2/2x0
...

(Ah)k/k!x0
x1

Ahx1
...

(Ah)k/k!xm−1

xm
xm
...

xm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

262 32 Quantum Ordinary Differential Equation Algorithms: Block-Matrix …

|init = |0 x0 h
m−1

i=0
|i(k + 1) + 1 b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0
hb
0
...
0
0
hb
...
0
0
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where normalization of |x and |init is implied.
Solving this linear system yields a quantum state |x encoding all the time

steps (and intermediate vectors). Finally, measuring the first register |i such that
i ≥ m(k + 1) + j projects onto the desired solution.

This algorithm consists of the following three major steps:

1. Prepare |init
2. Solve linear system MA,h,k,m,p
3. Measure first register |i
4. Restart if i < m(k + 1) + j.

The overall complexity [2] i s

O(κAgT A poly log(κAgβT A))

where κA is the condition number of A, g = maxt∈[0,mh] x(t)
x(mh) , and β =

x0 +T b
x(T) .

The method uses (1, m, 0) block encoding of UA, and state preparation unitaries
Ux0 and Ub.

The no-fast-forwarding theorem forbids sublinear scaling in time for general
problems [2]. While [6] provides lower bounds on the complexity of solving
any general linear systems of ODEs, they also identify specific cases for which
the solution can be fast-forwarded, i.e., solved with sublinear scaling in time.
Bounded negative-semidefinite linear ODE problems with square-root access to
A or negative-definite problems can achieve a quadratic speedup in T , while prob-
lems for which the Eigen decomposition is known can achieve an exponential
speedup.

32 Quantum Ordinary Differential Equation Algorithms: Block-Matrix … 263

An algorithm with a complete circuit description and experimental results for
a system of inhomogeneous ODEs of size 4 × 4 was given by Xin et al. [7] for
unitary A.

Speedups for ODEs can have a great impact on engineering and scientific
computation. As an example, the N -body problem involves numerically solving
a system of ODEs in 6N dimensions for time t. Compared to a classical com-
plexity of O(t) and O(N) for solution time and memory resources, a quantum
computer could potentially require O(t) time and O(log(N)) qubits.

Hyperbolic and parabolic partial differential equations, ubiquitous in engineer-
ing, physics, finance, medicine, and many other applications, can be transformed
into systems of ODEs using a discretization in space. We discuss partial differential
equations in Chap. 34: Quantum Partial Differential Equation Algorithms.

The Hamiltonian simulation problem, discussed in detail in Chap. 28, Hamil-
tonian Simulation Techniques, for quantum dynamics of closed quantum systems
seeks a solution of the Schrodinger equation, which is a homogeneous system
of first-order ODEs. The first quantum algorithm for this problem was pro-
posed by Lloyd [8] using the Trotter method. The complexity of this method
was later improved to a query complexity of O d2 H maxt log d

2 H max
by Berry et al. [9] by using a linear combination of unitaries arising from a
truncated Taylor series. The optimal algorithm for Hamiltonian simulation using
quantum signal processing was later provided by Low and Chuang [10] with a
query complexity of O td H max + log 1 / log log 1 using d -sparse oracles or
O t H + + log 1 / log log 1 using block-encoded oracles.

Various algorithms have been presented for nonlinear ODE problems. The first
quantum algorithm for nonlinear differential equations (also the first quantum
algorithm for any differential equation) was proposed by Leyton [11]. Leyton’s
algorithm proposed solving a nonlinear system of ordinary differential equations
using the Euler method and requires multiple copies of the initial condition,
leading to an exponentially increasing cost in time. The algorithm requires the
preparation of multiple copies of a quantum state to effect nonlinear transfor-
mations of amplitude-encoded states. While block-encoding enables nonlinear
transformations of the singular values of a matrix A, it does not allow nonlinear
transformations of quantum state amplitudes as inputs to nonlinear functions.

Liu et al. [5] has provided an algorithm for dissipative nonlinear differential
equations, specifically the n-dimensional quadratic ODE initial value problem,
using the Carleman linearization technique. Xue et al. [12] applied homotopic
perturbation methods for exponentially improved precision for the homogeneous
version of the algorithm in [5] with an orthogonal linear term. However, Krovi
[4] notes that the problem considered by Xue et al. [12] is limited by exponen-
tially decaying solutions and suffers from the post-selection problem. Joseph [13]
explores the transformation of phase space to an equivalent Schrödinger equation
using the Koopman–von Neumann formulation. Berry and Costa [14] addresses
time-dependent problems using the Dyson series, and the spectral method in [3]
can also handle time-dependent A(t). Lloyd et al. [15] proposed an algorithm
for nonlinear ODEs using forward Euler discretization for short time intervals;

264 32 Quantum Ordinary Differential Equation Algorithms: Block-Matrix …

this also requires multiple copies of the initial state, but the increase in cost is
quadratic rather than exponential as in [11]. A time-marching strategy for nonlin-
ear ODEs has been suggested by [16, 17]. All quantum algorithms for nonlinear
ODEs require the system to be dissipative.

Engel et al. [18] provides an overview of techniques for mapping nonlinear
systems to infinite-dimensional linear systems using Carleman embedding and
truncating to finite-dimensional systems for solution on quantum computers but
does not provide a concrete algorithm. Joseph [13] also provides an overview of
the Koopman–von Neumann method for a potential quadratic speedup in specific
cases.

References

1. D.W. Berry, High-order quantum algorithm for solving linear differential equations. J. Phys.
A: Math. Theor. 47(10), 105301 (2014). https://doi.org/10.1088/1751-8113/47/10/105301

2. D.W. Berry, A.M. Childs, A. Ostrander, G. Wang, Quantum algorithm for linear differen-
tial equations with exponentially improved dependence on precision. Commun. Math. Phys.
356(3), 1057–1081 (2017). https://doi.org/10.1007/s00220-017-3002-y

3. A.M. Childs, J.-P. Liu, Quantum spectral methods for differential equations. Commun. Math.
Phys. 375(2), 1427–1457 (2020). https://doi.org/10.1007/s00220-020-03699-z

4. H. Krovi, Improved quantum algorithms for linear and nonlinear differential equations. Quan-
tum 7, 913 (2023). https://doi.org/10.22331/q-2023-02-02-913

5. J.-P. Liu, H.Ø. Kolden, H.K. Krovi, N.F. Loureiro, K. Trivisa, A.M. Childs, Efficient quan-
tum algorithm for dissipative nonlinear differential equations. Proc. Natl. Acad. Sci. U.S.A.
118(35), e2026805118 (2021). https://doi.org/10.1073/pnas.2026805118

6. D. An, J.-P. Liu, D. Wang, Q. Zhao, A theory of quantum differential equation solvers: limita-
tions and fast-forwarding (2022). https://doi.org/10.48550/ARXIV.2211.05246

7. T. Xin et al., Quantum algorithm for solving linear differential equations: theory and experi-
ment. Phys. Rev. A 101(3), 032307 (2020). https://doi.org/10.1103/PhysRevA.101.032307

8. S. Lloyd, Universal quantum simulators. Science 273(5278), 1073–1078 (1996). https://doi.
org/10.1126/science.273.5278.1073

9. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Simulating Hamiltonian dynam-
ics with a truncated Taylor series. Phys. Rev. Lett. 114(9), 090502 (2015). https://doi.org/10.
1103/PhysRevLett.114.090502

10. G.H. Low, I.L. Chuang, Optimal Hamiltonian simulation by quantum signal processing. Phys.
Rev. Lett. 118(1), 010501 (2017). https://doi.org/10.1103/PhysRevLett.118.010501

11. S.K. Leyton, T.J. Osborne, A quantum algorithm to solve nonlinear differential equations
(2008). https://doi.org/10.48550/ARXIV.0812.4423

12. C. Xue, Y.-C. Wu, G.-P. Guo, Quantum homotopy perturbation method for nonlinear dissipa-
tive ordinary differential equations. New J. Phys. 23(12), 123035 (2021). https://doi.org/10.
1088/1367-2630/ac3eff

13. I. Joseph, Koopman–von Neumann approach to quantum simulation of nonlinear classical
dynamics. Phys. Rev. Res. 2(4), 043102 (2020). https://doi.org/10.1103/PhysRevResearch.2.
043102

14. D.W. Berry, P.C.S. Costa, Quantum algorithm for time-dependent differential equations using
Dyson series (2022). https://doi.org/10.48550/ARXIV.2212.03544

15. S. Lloyd et al., Quantum algorithm for nonlinear differential equations (2020). https://doi.org/
10.48550/ARXIV.2011.06571

16. V. Buzek, M. Hillery, Quantum cloning. Phys. World 14(11), 25–30 (2001). https://doi.org/10.
1088/2058-7058/14/11/28

https://doi.org/10.1088/1751-8113/47/10/105301
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1007/s00220-020-03699-z
https://doi.org/10.22331/q-2023-02-02-913
https://doi.org/10.1073/pnas.2026805118
https://doi.org/10.48550/ARXIV.2211.05246
https://doi.org/10.1103/PhysRevA.101.032307
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.118.010501
https://doi.org/10.48550/ARXIV.0812.4423
https://doi.org/10.1088/1367-2630/ac3eff
https://doi.org/10.1088/1367-2630/ac3eff
https://doi.org/10.1103/PhysRevResearch.2.043102
https://doi.org/10.1103/PhysRevResearch.2.043102
https://doi.org/10.48550/ARXIV.2212.03544
https://doi.org/10.48550/ARXIV.2011.06571
https://doi.org/10.48550/ARXIV.2011.06571
https://doi.org/10.1088/2058-7058/14/11/28
https://doi.org/10.1088/2058-7058/14/11/28

References 265

17. G.H. Low, I.L. Chuang, Hamiltonian simulation by qubitization. Quantum 3, 163 (2019).
https://doi.org/10.22331/q-2019-07-12-163

18. A. Engel, G. Smith, S.E. Parker, Linear embedding of nonlinear dynamical systems and
prospects for efficient quantum algorithms. Phys. Plasmas 28(6), 062305 (2021). https://doi.
org/10.1063/5.0040313

https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1063/5.0040313
https://doi.org/10.1063/5.0040313

33Quantum Ordinary Differential
Equation Algorithms: Time-Marching
Algorithms

Recent work has demonstrated methods to circumvent the construction of a large
linear system by using a time-marching strategy to propagate the solution for-
ward in time [1, 2]. However, these techniques are currently sub-optimal and scale
quadratically in t.

A time-marching algorithm can be described as a procedure that integrates
differential equations one time step at a time, following the sequence

|ψl−1 → |ψl |ψl+1

For time-independent linear first-order ordinary differential equations (ODEs)
with unitary dynamics, this can be accomplished in a relatively straightforward
manner using the Trotter method. However, for higher precision and non-unitary
dynamics, additional considerations are needed. The first quantum time-marching
method was proposed by Fang et al. [2] for time-dependent ODEs, utilizing the
Dyson series.

In this chapter, we will focus on challenges associated with the time-marching
approach and techniques to address them. Consider a time-independent first-order
homogeneous ODE system

dx

dt
= Ax

Using a forward Euler discretization with time steps t, we obtain

xt = (I + A t)xt−1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_33

267

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_33&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_33

268 33 Quantum Ordinary Differential Equation Algorithms …

Let’s assume access to I + A t through a (α I + A t , m, 0) block encoding.
We may use this block encoding for each time step

I+A t
α I+A t ∗

∗ ∗
|xt−1 ⊗ |0 ⊗ m = 1

α I + A t
|xt |0 ⊗m + | ⊥

where successful measurement of all ancilla qubits in the |0 state yields |xt with
a success probability of

p |0 ⊗m = 1

α2 I + A t 2
xt 2

xt−1
2

Given |x0 , applying this process L = T
t times yields |xT with an overall

success probability

1

α2L I + AT /L 2L
xT 2

x0 2
≈

1

αL

1

eAT
2

xT 2

x0 2

Note that this approach requires O(mL) ancilla qubits. The factor 1
αL reflects the

excessive subnormalization of the block-encoding. In the optimal case, α = 1. The
factors 1

I+AT /L 2L
and xT 2

x0 2 arise from the block-encoding and the dynamics of

the problem itself.
The excessive subnormalization arising due to α can be mitigated by apply-

ing the Uniform Singular Value Amplification (USVA) procedure. As discussed in
Chap. 26, Matrix-Vector Multiplications and Affine Linear Operations, the under-
lying idea of USVA is to use the Quantum Singular Value Transform to apply a
polynomial approximating f (x) ≈ g(x) = α

1−δ x over the interval x ∈ − 1
α ,

1
α as

shown in Fig. 33.1. Since f (x) approximates g(x) with a polynomial, this method
introduces errors.

By choosing δ = 1
L , the success probability over L > 1 time steps can be

bounded below by

1

(1 − δ)L
1

I + AT /L 2L
xT 2

x0 2

Using the inequality (1 − δ)L ≥ e− δL
1−δ , which for δ = 1

L gives (1 − δ)L =
(1 − 1/L)L ≥ e−1, we see that this term is bounded below by a constant, i.e.,

(1). Therefore, the overall success probability is O 1
I+AT /L 2L

xT 2

x0 2
.

As discussed in Chap. 26, Matrix-Vector Multiplications and Affine Linear
Operations, we may use a compression gadget to reduce the number of ancilla
qubits. In the naïve approach for implementing a time-marching algorithm, one
must dedicate O(m) ancilla qubits for each block encoding, implementing a time

References 269

Fig. 33.1 Polynomial fit for
USVA

step. Furthermore, the USVA procedure requires one more ancilla qubit. These
ancilla requirements may be reduced using a compression gadget to O(m + log L).

Using these techniques, one may develop an algorithm for homogeneous time-
dependent linear systems of differential equations based on the Dyson series
approach

d

dt
|ψ(t) = A(t)|ψ(t)

For full analysis and complexity of this algorithm, see [2].
It is important to note that this time-marching approach is not known to be

optimal, as its complexity scales quadratically in t, compared to the linear scaling
achievable by block-matrix methods. Furthermore, existing algorithms have been
developed primarily for homogeneous systems, though the method of variation of
parameters has been proposed for inhomogeneous cases. Whether time-marching
algorithms for ODEs can match the efficiency of block-matrix methods remains
an open research question.

References

1. D. An, J.-P. Liu, D. Wang, Q. Zhao, A theory of quantum differential equation solvers: limita-
tions and fast-forwarding (2022). https://doi.org/10.48550/ARXIV.2211.05246

2. D. Fang, L. Lin, Y. Tong, Time-marching based quantum solvers for time-dependent linear
differential equations. Quantum 7, 955 (2023). https://doi.org/10.22331/q-2023-03-20-955

https://doi.org/10.48550/ARXIV.2211.05246
https://doi.org/10.22331/q-2023-03-20-955

34Quantum Partial Differential
Equation Algorithms

Partial differential equations (PDEs) are central to modeling physical phenomena
across science and engineering. PDEs of practical interest can commonly be classi-
fied as elliptic, parabolic, and hyperbolic systems. PDEs are solved numerically on
classical computers using techniques such as the finite element, finite difference,
or finite volume methods, which reduce the PDEs to a discretized system of equa-
tions. These equations are solved using either direct or iterative methods. Iterative
solvers scale better than direct methods and are preferred for large-scale problems
with steady-state solutions or transient problems with implicit time marching.

Quantum computers can be used to accelerate the solution of linear systems
of equations arising from PDE discretization through quantum linear system algo-
rithms (QLSA). However, for large discretizations, the linear system can become
increasingly ill-conditioned. As an example, the condition number of a linear sys-
tem arising from a finite element discretization can scale as O N 2 , negating the
exponential speedup provided by direct QLSAs when compared to classical iter-
ative solvers. Alternatively, some PDEs can be mapped to either the Schrödinger
equation or to systems of ODEs, enabling the use of quantum Hamiltonian sim-
ulation or ODE solvers that can yield exponential speedups with respect to the
number of unknowns. However, such approaches are limited to structured grids on
rectangular domains.

Several quantum algorithms have been proposed for solving PDEs using dif-
ferent discretization techniques: finite element [1, 2], finite volume [3], finite
difference [4–6], and spectral methods [7]. These approaches include (i) directly
solving the discretized linear system via QLSAs [1]; (ii) employing Hamiltonian
simulation to extract eigenvalues [8, 9]; (iii) mapping the PDE to the Schrödinger
equation and evolving in time using Hamiltonian simulation [10, 11]; and (iv)
quantum ODE algorithms to evolve spatially discretized evolutionary PDEs [12].
We summarize these approaches below.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_34

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_34&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_34

272 34 Quantum Partial Differential Equation Algorithms

Clader et al. [1] introduces the use of QLSAs to solve the linear system
arising from a finite element discretization with preconditioning using a sparse
approximate-inverse preconditioner for exponential speedup. This approach was
further investigated by Montanaro and Pallister [2], who points out that when the
cost of reading out the properties of the solution is included, the speedup is poly-
nomial, with the speedup increasing for higher dimensional problems. However,
quantum circuits or procedures to implement the preconditioner were not provided.

For the Poisson equation with Dirichlet boundary conditions on rectangular
grids, Cao et al. [9] proposed an algorithm with linear scaling in spatial dimension
d and polylogarithmic scaling in 1 , utilizing the finite difference method to
discretize the Laplacian operator on a unit cube and using Hamiltonian simulation
of the discretized operator. Due to the geometry of the domain, the Laplacian
operator in d dimensions can be expressed as the Kronecker sum

A = Lh ⊗ I ⊗ · · · ⊗ I + I ⊗ Lh ⊗ · · · ⊗ I + · · · + I ⊗ I ⊗ · · · ⊗ Lh

where Lh is the discretized Laplacian operator with grid spacing h. Using the
exponentiation identity for Kronecker sums, the following Hamiltonian simulation
is performed:

eiAt = eiLht ⊗ I ⊗ · · · ⊗ I I ⊗ eiLht ⊗ · · · ⊗ I · · · I ⊗ I ⊗ · · · ⊗ eiLht

= e iLht ⊗ eiLht ⊗ · · · ⊗ eiLht

Controlled versions of the Hamiltonian simulation are used to kick back the
phase, and the remainder of the algorithm proceeds similar to HHL. This algo-
rithm was implemented with modifications for circuit optimization by Wang et al.
[13] on a quantum simulator. Childs et al. [7] points out that while the circuit depth
scales favorably, the probability of success is O(poly(1)) and finite-difference
discretization errors are not considered in the analysis. Childs and Liu [14]
approaches the same problem with spectral and adaptive finite difference methods
under a “global strict diagonal dominance” requirement, a stricter condition than
diagonal dominance, to achieve a complexity of O d2 poly log(1) using the

spectral method and O d
13
2 poly log(d) using adaptive finite difference grids.

However, the Kronecker product structure does not generalize to unstructured grids
on general domains encountered in problems of practical interest.

An algorithm for simulating the wave equation using the finite difference
method was presented in [10] for Dirichlet and Neumann boundary conditions
using an approach based on a factorization of the Laplacian operator on a rect-
angular domain as Lh = BB † to map the problem (second-order time derivative)
to the Schrödinger equation (first-order time derivative) solved using Hamiltonian
simulation as

d

dt
|ψ(t) = − i

h
0 B
B† 0

|ψ(t)

34 Quantum Partial Differential Equation Algorithms 273

by noting that

d2

dt2
|ψ(t) = − 1

h2
BB† 0
0 B†B

|ψ(t) = − 1

h2
Lh 0
0 L† h

|ψ(t)

where |ψ(t) = φV

φE
. φV encodes the solution to the wave equation and φE are

intermediate variables. This algorithm was implemented by Suau et al. [15], albeit
using the sub-optimal Trotter–Suzuki method for Hamiltonian simulation.

Engel et al. [11] provide a quantum algorithm for plasma physics problems.
A linearized version of the Vlasov equation was derived, which is then evolved
in time using Hamiltonian simulation algorithms similar to [10], and a com-
plete circuit description with simulation results is provided with errors scaling
as O(poly(1)). Novikau et al. [16] mapped a cold plasma wave model to
a Hamiltonian simulation and suggested quantum signal processing for further
improvements. These Schrödingerization approaches are specialized and may not
generalize to all PDEs.

Algorithms for evolutionary PDEs mentioned above typically scale linearly in
simulation time, i.e., O(t). An et al. [12] discretize hyperbolic and parabolic PDEs
in space over a rectangular domain to obtain a system of ordinary differential
equations. Quantum ODE solvers were then used to evolve the system in time
instead of Hamiltonian simulation. They consider two scenarios to “fast-forward”
(improve the time-complexity of) the simulation: semidefinite ODE systems with
square-root access (similar to the decomposition in [10]) and diagonalizable sys-
tems (using a Fourier transform) to get O

√
t and O(log t) scaling in time. The

lifting transformation proposed by Costa et al. [10] to transform a second-order
ODE system d

2

dt2
u(t) = (A + cI)u(t)+b(t) to a first-order ODE system is extended

for non-homogeneous systems as

d

dt
u(t)
ṽ(t)

= 0 I
(A + cI) 0

u(t)
ṽ(t)

+ 0
b(t)

Analytical results for the transport equation, heat equation, advection–diffu-
sion equation, wave equation, Klein–Gordon equation, Airy equation, and the
Euler beam equation are provided. However, the fast-forwarding results are again
restricted to specialized domains and structured grids.

Several algorithms have been proposed for numerical solutions of the Navier–
Stokes equations for computational fluid dynamics. Quantum lattice-gas models
have been proposed by [17–20], with numerical results presented in [21]. However,
these methods are for Type-II quantum computers [22] whose architecture differs
from the universal gate-based quantum computer architecture. Other approaches,
such as the lattice Boltzmann method, have also been mapped to quantum circuits.
Budinski [23] detailed circuits and simulations for the advection–diffusion equa-
tion, achieving O log2(αD) scaling, where α is the total number of distribution
functions and D is the number of distribution functions for each site, albeit with a

274 34 Quantum Partial Differential Equation Algorithms

fixed choice of the relaxation time ω = 1 and a limited choice of D1Q2 and D2Q5
models in 1D and 2D respectively. The approach requires classical computation
for renormalization of the post-selected state after each time step. We note, how-
ever, that [24] pointed out that the streaming and collision operations are amenable
to quantum computation and provide a quantum mapping of transport equations
in fluid flows using analogies between the Dirac and Lattice Boltzmann equations
to define an algorithm that measures an ancillary qubit at each time step, with a
non-zero probability of success.

A quantum Navier-Stokes algorithm based on the quantum amplitude estimation
algorithm was proposed by Gaitan [25], which was later generalized to a quantum
nonlinear PDE algorithm in [26]. However, the precision of the algorithms scales

as 1
q+1 , where q = r + ρ is the smoothness parameter of the solution, with r

being the highest derivative retained in a Taylor series expansion and 0 ≤ ρ ≤ 1,
leading to a O(poly(1)) scaling. Oz et al. [27] improved the accuracy of the
algorithm by an order of magnitude by using Chebyshev points, but retained the
overall complexity to O(poly(1)). Numerical results were demonstrated using
quantum simulators.

References

1. B.D. Clader, B.C. Jacobs, C.R. Sprouse, Preconditioned quantum linear system algorithm.
Phys. Rev. Lett. 110(25), 250504 (2013). https://doi.org/10.1103/PhysRevLett.110.250504

2. A. Montanaro, S. Pallister, Quantum algorithms and the finite element method. Phys. Rev. A
93(3), 032324 (2016). https://doi.org/10.1103/PhysRevA.93.032324

3. F. Fillion-Gourdeau, E. Lorin, Simple digital quantum algorithm for symmetric first-order lin-
ear hyperbolic systems. Numer. Algor. 82(3), 1009–1045 (2019). https://doi.org/10.1007/s11
075-018-0639-3

4. D. Fang, L. Lin, Y. Tong, Time-marching based quantum solvers for time-dependent linear
differential equations. Quantum 7, 955 (2023). https://doi.org/10.22331/q-2023-03-20-955

5. B. Reggio, N. Butt, A. Lytle, P. Draper, Fast partitioning of Pauli strings into commuting fam-
ilies for optimal expectation value measurements of dense operators. Phys. Rev. A 110(2),
022606 (2024). https://doi.org/10.1103/PhysRevA.110.022606

6. M. Kohda, R. Imai, K. Kanno, K. Mitarai, W. Mizukami, Y.O. Nakagawa, Quantum
expectation-value estimation by computational basis sampling. Phys. Rev. Res. 4(3), 033173
(2022). https://doi.org/10.1103/PhysRevResearch.4.033173

7. A.M. Childs, J.-P. Liu, A. Ostrander, High-precision quantum algorithms for partial differential
equations. Quantum 5, 574 (2021). https://doi.org/10.22331/q-2021-11-10-574

8. D.W. Berry, A.M. Childs, A. Ostrander, G. Wang, Quantum algorithm for linear differen-
tial equations with exponentially improved dependence on precision. Commun. Math. Phys.
356(3), 1057–1081 (2017). https://doi.org/10.1007/s00220-017-3002-y

9. Y. Cao, A. Papageorgiou, I. Petras, J. Traub, S. Kais, Quantum algorithm and circuit design
solving the Poisson equation. New J. Phys. 15(1), 013021 (2013). https://doi.org/10.1088/
1367-2630/15/1/013021

10. P.C.S. Costa, S. Jordan, A. Ostrander, Quantum algorithm for simulating the wave equation.
Phys. Rev. A 99(1), 012323 (2019). https://doi.org/10.1103/PhysRevA.99.012323

11. A. Engel, G. Smith, S.E. Parker, Quantum algorithm for the Vlasov equation. Phys. Rev. A
100(6), 062315 (2019). https://doi.org/10.1103/PhysRevA.100.062315

https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1103/PhysRevA.93.032324
https://doi.org/10.1007/s11075-018-0639-3
https://doi.org/10.1007/s11075-018-0639-3
https://doi.org/10.22331/q-2023-03-20-955
https://doi.org/10.1103/PhysRevA.110.022606
https://doi.org/10.1103/PhysRevResearch.4.033173
https://doi.org/10.22331/q-2021-11-10-574
https://doi.org/10.1007/s00220-017-3002-y
https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1103/PhysRevA.100.062315

References 275

12. D. An, J.-P. Liu, D. Wang, Q. Zhao, A theory of quantum differential equation solvers: limita-
tions and fast-forwarding (2022). https://doi.org/10.48550/ARXIV.2211.05246

13. S. Wang, Z. Wang, W. Li, L. Fan, Z. Wei, Y. Gu, Quantum fast Poisson solver: the algorithm
and complete and modular circuit design. Quantum Inf. Process 19(6), 170 (2020). https://doi.
org/10.1007/s11128-020-02669-7

14. A.M. Childs, J.-P. Liu, Quantum spectral methods for differential equations. Commun. Math.
Phys. 375(2), 1427–1457 (2020). https://doi.org/10.1007/s00220-020-03699-z

15. A. Suau, G. Staffelbach, H. Calandra, Practical quantum computing: solving the wave equation
using a quantum approach. ACM Trans. Quantum Comput. 2(1), 1–35 (2021). https://doi.org/
10.1145/3430030

16. I. Novikau, E.A. Startsev, I.Y. Dodin, Quantum signal processing for simulating cold plasma
waves. Phys. Rev. A 105(6), 062444 (2022). https://doi.org/10.1103/PhysRevA.105.062444

17. D.W. Berry, A.M. Childs, R. Cleve, R. Kothari, R.D. Somma, Simulating Hamiltonian dynam-
ics with a truncated Taylor series. Phys. Rev. Lett. 114(9), 090502 (2015). https://doi.org/10.
1103/PhysRevLett.114.090502

18. Y. Shen et al., Estimating Eigenenergies from quantum dynamics: a unified noise-resilient
measurement-driven approach (2023). https://doi.org/10.48550/arXiv.2306.01858. arXiv:
2306.01858

19. Y. Shen et al., Efficient measurement-driven Eigenenergy estimation with classical shadows
(2024). https://doi.org/10.48550/arXiv.2409.13691. arXiv:2409.13691

20. Z. Ding, L. Lin, even shorter quantum circuit for phase estimation on early fault-tolerant
quantum computers with applications to ground-state energy estimation. PRX Quantum 4(2),
020331 (2023). https://doi.org/10.1103/PRXQuantum.4.020331

21. M.M. Micci, J. Yepez, Measurement-based quantum lattice gas model of fluid dynamics in
2 + 1 dimensions. Phys. Rev. E 92(3), 033302 (2015). https://doi.org/10.1103/PhysRevE.92.
033302

22. J. Yepez, Type-II quantum computers. Int. J. Mod. Phys. C 12(09), 1273–1284 (2001). https://
doi.org/10.1142/S0129183101002668

23. L. Budinski, Quantum algorithm for the advection–diffusion equation simulated with the lat-
tice Boltzmann method. Quantum Inf. Process 20(2), 57 (2021). https://doi.org/10.1007/s11
128-021-02996-3

24. A. Mezzacapo, M. Sanz, L. Lamata, I.L. Egusquiza, S. Succi, E. Solano, Quantum simulator
for transport phenomena in fluid flows. Sci. Rep. 5(1), 13153 (2015). https://doi.org/10.1038/
srep13153

25. F. Gaitan, Finding flows of a Navier–Stokes fluid through quantum computing. npj Quantum
Inf. 6(1), 61 (2020). https://doi.org/10.1038/s41534-020-00291-0

26. F. Gaitan, Finding solutions of the Navier-Stokes equations through quantum computing—
recent progress, a generalization, and next steps forward. Adv. Quantum Tech. 4(10), 2100055
(2021). https://doi.org/10.1002/qute.202100055

27. F. Oz, O. San, K. Kara, An efficient quantum partial differential equation solver with Cheby-
shev points. Sci. Rep. 13(1), 7767 (2023). https://doi.org/10.1038/s41598-023-34966-3

https://doi.org/10.48550/ARXIV.2211.05246
https://doi.org/10.1007/s11128-020-02669-7
https://doi.org/10.1007/s11128-020-02669-7
https://doi.org/10.1007/s00220-020-03699-z
https://doi.org/10.1145/3430030
https://doi.org/10.1145/3430030
https://doi.org/10.1103/PhysRevA.105.062444
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.48550/arXiv.2306.01858
http://arxiv.org/abs/2306.01858
http://arxiv.org/abs/2306.01858
https://doi.org/10.48550/arXiv.2409.13691
http://arxiv.org/abs/2409.13691
https://doi.org/10.1103/PRXQuantum.4.020331
https://doi.org/10.1103/PhysRevE.92.033302
https://doi.org/10.1103/PhysRevE.92.033302
https://doi.org/10.1142/S0129183101002668
https://doi.org/10.1142/S0129183101002668
https://doi.org/10.1007/s11128-021-02996-3
https://doi.org/10.1007/s11128-021-02996-3
https://doi.org/10.1038/srep13153
https://doi.org/10.1038/srep13153
https://doi.org/10.1038/s41534-020-00291-0
https://doi.org/10.1002/qute.202100055
https://doi.org/10.1038/s41598-023-34966-3

35Variational Algorithms: Theory

With the exception of the Hamiltonian simulation of sparse systems using low-
order Trotter–Suzuki methods and short evolution times for a small number
of qubits, or Hadamard tests with significant circuit optimization, none of the
algorithms discussed in the previous chapters can run on contemporary NISQ hard-
ware. This is due to high sensitivity to noise, hardware imperfections, and limited
physical qubit counts that prevent error correction. In the NISQ era, there is strong
demand for algorithms that can provide quantum advantage using noisy hardware.
Variational algorithms have recently gained attention as a hybrid classical-quantum
approach for algorithms that can operate on NISQ devices. Examples include
the Quantum Adiabatic Optimization Algorithm (QAOA) [1] for combinatorial
problems, Variational Quantum Linear Solver (VQLS) [2] for linear systems,
and the Variational Quantum Eigensolver [3] ground-state preparation in quantum
chemistry problems. However, the classical-quantum training loop of variational
algorithms is costly and currently precludes quantum advantage. Optimization is
problem- and hardware-specific and is not known to generalize. For example,
[4] shows that VQLS, when trained to solve a 1D Poisson’s problem, does not
generalize to finer discretizations.

Variational quantum algorithms are analogous to classical machine learning
models, but use a quantum ansatz rather than a classical one, and use quantum
circuits to evaluate the cost function.

The core ingredients of a variational quantum algorithm are a cost function
C(θ), a parametrized quantum ansatz U (θ), and an optimization method (gradient-
based or gradient-free) [5] as shown in Fig. 35.1.

The cost function encodes the solution of the problem as

θ ∗ = arg min
θ

C(θ)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_35

277

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_35&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_35

278 35 Variational Algorithms: Theory

Fig. 35.1 Schematic of a variational quantum algorithm optimization loop

where θ is a set of trainable parameters of an ansatz U (θ), a trainable quantum
circuit parametrized by θ . The parameters θ can be continuous or discrete. As an
example, a continuous parameter could be the rotation angle for a Y rotation gate,
and a discrete parameter could be whether to apply a quantum gate in a circuit or
not. The cost function can be expressed as

C(θ) = f {{ρk}, {Ok}, U (θ)}

where f is some function, {ρk} are input states (training data), and {Ok} are
observables, or measurements of the quantum circuit. The evaluation of C(θ)
is performed using quantum computers (possibly with some classical post-
processing), while the optimization of θ is performed using classical computers,
leading to a hybrid algorithm. For NISQ hardware, the quantum circuit must fit
hardware constraints, i.e., limited qubits and shallow depth. Some approaches
work directly with hardware-level optimization, e.g., microwave pulse shaping for
superconducting qubits.

The choice of the ansatz determines the parameters θ . In general, a quantum
ansatz can be expressed as

U (θ) =
L

l=1
Ul(θl)

Many different ansatze have been proposed for various problems, with the
common goal of efficiency and trainability on NISQ hardware.

The cost function may be optimized using gradient-based or gradient-free
approaches. Gradient-based approaches compute the derivatives ∂C(θl)

∂θl
. The deriva-

tive may be approximated using finite differencing. However, “parameter shift”

References 279

rules [6–9] allow exact differentiation of parametrized quantum circuits (for con-
tinuous parameters) analogous to automatic differentiation for classical computing.
The key idea behind parameter shift rules is that to compute ∂C(θl)

∂θl
, the same quan-

tum circuit is used with a “parameter shift” s ∈ R applied to the parameter θl with
a multiplier c ∈ R:

∂C(θ)
∂θl

= c C θ (l) − C θ (l)

where

θ (l) k = θk , ∀ k l
θk + s k = l

Although similar to finite differences in appearance, the parameter shift rule is
exact. Higher order derivatives may be computed by nesting this rule. Parameter
shift rules can be computed for any arbitrary circuit with continuous parame-
ters. Hybrid quantum-classical models can combine parameter shift for quantum
circuits with automatic differentiation for classical parts [5, 10].

However, optimization of quantum circuits can suffer from vanishing gradients
[10, 11]. In these cases, classical derivative-free optimizers like Nelder–Mead [12,
13] can be used if the parameter space is not too large. Optimization is also sensi-
tive to noise; recent studies suggest SPSA and CMA-ES are more robust in noisy
settings [14].

References

1. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm. (2014).
arXiv. https://doi.org/10.48550/ARXIV.1411.4028

2. C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, Variational
quantum linear solver. (2019). arXiv. https://doi.org/10.48550/ARXIV.1909.05820

3. P. J. Ollitrault et al., Quantum equation of motion for computing molecular excitation ener-
gies on a noisy quantum processor. Phys. Rev. Research, 2(4), 043140(2020). https://doi.org/
10.1103/PhysRevResearch.2.043140

4. E. Cappanera, Variational quantum linear solver for finite element problems: a Poisson equa-
tion test case. TU Delft, 2021. [Online]. http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-
ad7b-babb1b298d87

5. M. Cerezo et al., Variational quantum algorithms. Nat Rev Phys., 3(9), 625–644 (2021). https://
doi.org/10.1038/s42254-021-00348-9

6. N. Linden, A. Montanaro, C. Shao, Quantum vs. classical algorithms for solving the heat equa-
tion. Commun. Math. Phys., 395(2), 601–641 (2022). https://doi.org/10.1007/s00220-022-044
42-6

7. I. Kerenidis, A. Prakash, Quantum gradient descent for linear systems and least squares. Phys.
Rev. A, 101(2), 022316 (2020). https://doi.org/10.1103/PhysRevA.101.022316

8. P. Rebentrost, M. Schuld, L. Wossnig, F. Petruccione, S. Lloyd, Quantum gradient descent
and Newton’s method for constrained polynomial optimization. New J. Phys., 21(7), 073023
(2019). https://doi.org/10.1088/1367-2630/ab2a9e

https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.1909.05820
https://doi.org/10.1103/PhysRevResearch.2.043140
https://doi.org/10.1103/PhysRevResearch.2.043140
http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-babb1b298d87
http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-babb1b298d87
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1007/s00220-022-04442-6
https://doi.org/10.1007/s00220-022-04442-6
https://doi.org/10.1103/PhysRevA.101.022316
https://doi.org/10.1088/1367-2630/ab2a9e

280 35 Variational Algorithms: Theory

9. O. M. Raisuddin, S. De, Quantum multigrid algorithm for finite element problems. (2024).
https://doi.org/10.48550/ARXIV.2404.07466

10. M. Broughton et al., TensorFlow quantum: A software framework for quantum machine learn-
ing. (2020). arXiv. https://doi.org/10.48550/ARXIV.2003.02989

11. S. Khatri, R. LaRose, A. Poremba, L. Cincio, A. T. Sornborger, P. J. Coles, Quantum-assisted
quantum compiling. Quantum, 3, 140(2019). https://doi.org/10.22331/q-2019-05-13-140

12. J. R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, The theory of variational hybrid
quantum-classical algorithms. New J. Phys., 18(2), 023023(2016). https://doi.org/10.1088/
1367-2630/18/2/023023

13. J. A. Nelder, R. Mead, A simplex method for function minimization. Comp. Journal., 7(4),
308–313(1965). https://doi.org/10.1093/comjnl/7.4.308

14. X. Bonet-Monroig et al., Performance comparison of optimization methods on variational
quantum algorithms. Phys. Rev. A, 107(3), 032407 (2023). https://doi.org/10.1103/PhysRevA.
107.032407

https://doi.org/10.48550/ARXIV.2404.07466
https://doi.org/10.48550/ARXIV.2003.02989
https://doi.org/10.22331/q-2019-05-13-140
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1103/PhysRevA.107.032407
https://doi.org/10.1103/PhysRevA.107.032407

36Notable Variational Algorithms: VQE,
QAOA, and VQLS

In this chapter, we provide an overview of variational quantum algorithms for
eigenvalue, combinatorial, and linear system problems.

Variational Quantum Eigensolver

The most notable variational quantum algorithm is the variational quantum eigen-
solver (VQE), which was introduced by [1]. VQE seeks the extremal eigenvalues
of a Hamiltonian by minimizing a cost function defined as an expectation value.
This approach is fundamental for preparing ground states of quantum systems and
estimating their properties. As an example, the VQE has been used to compute
and prepare the ground and excited states and energies of molecules [2–5], which
is essential in quantum chemistry.

The VQE cost function is defined as

ψ(θ)|H |ψ(θ) 0|U (θ)†HU (θ) |0

where H is typically a sum of Pauli strings, and U (θ) is a parametrized quantum
circuit. In quantum chemistry, U (θ) is often chosen to be a unitary coupled cluster
(UCC) circuit (or one of its variants). For NISQ devices and general problems,
hardware-efficient ansatz such as SU(n) are commonly chosen.

Below, we provide an example where VQE is used to solve a random Hamil-
tonian expressed as a sum of Pauli strings, employing a hardware-efficient SU(2)
ansatz. Convergence results are shown in Fig. 36.1:

#!/usr/bin/python3

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_36

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_36&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_36

282 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

Fig. 36.1 Convergence of the variational quantum eigensolver

import numpy as np

import matplotlib.pyplot as plt

from qiskit.circuit.library import EfficientSU2

from qiskit.quantum_info import random_pauli, SparsePauliOp

from qiskit.primitives import StatevectorEstimator

from scipy.optimize import minimize

Define number of qubits

n = 3

Variational Quantum Eigensolver 283

Define Hamiltonian as a sum of Pauli strings

num_paulis = 10
mypaulis = [SparsePauliOp(random_pauli(n), np.random.rand()) for

_i in range(num_paulis)]

hamiltonian = sum(mypaulis)

Create VQE ansatz

ansatz = EfficientSU2(num_qubits=n,reps=3)

Define cost function

def cost_function_generator(circuit,observables):

def cost_function(params):

estimator = StatevectorEstimator()
pub = (circuit, observables, params)

job = estimator.run([pub])
cost = job.result()[0].data[’evs’]
return cost

return cost_function

mycostfunction = cost_function_generator(ansatz,hamiltonian)

Define a callback function to track progress of optimization

cost_history = []
def callback_function_generator(cost_history, cost_function):

def callback(theta):

cost = cost_function(theta)
cost_history.append(cost)

return None

return callback

mycallback = callback_function_generator(cost_history, mycost-
function)

Create initial guess

theta = np.zeros(ansatz.num_parameters)

Optimize ansatz

result = minimize(mycostfunction,theta,method=’COBYLA’,

callback=mycallback)

Get exact minimum eignevalue

exact_min_eig = min(np.linalg.eig(hamiltonian.to_

matrix())[0]).real

284 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

Compute errors

error = cost_history - exact_min_eig

Plot results

fig, axs = plt.subplots(2,sharex=True)
fig.suptitle(’VQE Convergence’)

axs[0].plot(cost_history)

axs[0].hlines(exact_min_eig,xmin=0,xmax=len(cost_

history),colors=’r’,linestyles=’dashed’)

axs[0].legend([’VQE’, ’Minimum Eigenvalue’])

axs[0].set(ylabel=’Cost’)

axs[1].plot(error)

axs[1].set_yscale(’log’)

axs[1].set(xlabel=’Iteration’,ylabel=’Error’)

plt.show()

Variational Quantum Linear Solver

Variational quantum linear solvers (VQLS) [6] have recently gained significant
attention. To solve a linear system Ax = b using the VQLS, the system matrix
needs to be provided as a sum of unitaries:

A =
k

αkU k

and the vector b should be accessible via a unitary state preparation.

Ub|0 b .

A parametrized quantum circuit U (θ) is chosen, with the goal of optimizing θ
such that

U θopt |0 x(θ) x

The global cost function for the VQLS is defined as

C̃G x(θ)A†|(I − |b b|)A|x(θ) x(θ)|A†A|x(θ) x(θ)|A†|b b |A|x(θ)

When x(θ)|A†A|x(θ) is small, C is also small, even if |x(θ) is not close to
|b . To avoid this, the cost is normalized by x(θ)|A†A|x(θ) to get

CG =
x(θ)|A†A|x(θ)
x(θ)|A†A|x(θ)

−
x(θ)|A†|b b|A |x(θ)

x(θ)|A†A|x(θ)
= 1 −

x(θ)|A† b |2
x(θ)|A†A|x(θ)

Quantum Approximate Optimization Algorithm 285

This formulation requires evaluating x(θ)|A†|b and x(θ)|A†A|x(θ) which can
be computed using the SWAP (or Hadamard) test:

x(θ)|A†A|x(θ)
mn

α∗
mαn x(θ)|U † mUn| x(θ)

x(θ)|A†|b 2 =
mn

α∗
mαn x(θ)|U † m|b b|Un|x (θ)

To address convergence issues related to barren plateaus, the global cost func-
tion is further modified by introducing multiple local cost functions that indirectly
minimize the global cost function [6]:

CL x(θ)|
⎛

⎝A†Ub

⎛

⎝ I − 1

n

n

j=1

0j 0j| ⊗ Ij

⎞

⎠U †A

⎞

⎠ |x(θ)

where 0j is the |0 state on qubit j and Ij is the identity on all qubits except qubit
j.

These cost functions are bounded as

CG, nCL ≥
2

κ2

VQLS has been applied to solve the heat equation in 1D [7, 8], in 2D [9], and
to potential and Stokes flow in 2D [10]. [9, 10] demonstrate logarithmic scaling
in 1/ ∈ and N . However, they use the Pauli basis for their matrix, which can have
O(N) terms for a 1D discrete Laplacian. [11] provides an efficient tensor product
decomposition with O(log(N)) terms.

Quantum Approximate Optimization Algorithm

The quantum approximate optimization algorithm (QAOA) [12] is a variational
algorithm designed for combinatorial optimization problems. The problem is typ-
ically formulated as a Quadratic Unconstrained Binary Optimization (QUBO)
problem:

arg min
x∈{0,1}n

xT Qx + xT b

x ∈ {0, 1}n is a binary string of n bits, Q ∈ RN×N is a matrix, and b ∈ R N
encoding a combinatorial problem. Note that bi can be absorbed into Qii.

By substituting xi = 1−Z i
2 where Zi is a Pauli-Z operator on the i-th qubit, the

problem can be reformulated as the Ising Hamiltonian problem:

HIsing =
i,j
ZiZjJij +

i
Zihi

286 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

arg min
|ψ 1,1}⊗n

ψ |HIsing |ψ

where |ψ ∈ {−1, 1}⊗n is a string of spin-up (+1) and spin-down (–1) states in the
{|+z , |−z } basis, J ∈ RN× N is a matrix, and h ∈ RN is a vector.

Both QUBO and Ising Hamiltonian optimization are NP-hard. Classical heuris-
tics are used for such problems, and QAOA is also a heuristic method, inspired by
the quantum adiabatic theorem and its discretization.

For clarity, we will illustrate QAOA using the Max-Cut problem as an example.
First, we provide an overview of the quantum adiabatic theorem, then introduce
the Max-Cut problem, and finally formulate QAOA for Max-Cut.

Quantum Adiabatic Theorem
The quantum adiabatic theorem states that if a quantum system in its ground state
evolves slowly enough, it will remain in its ground state. This can be formulated
mathematically by considering an initial Hamiltonian HI with a known ground
state, and a final Hamiltonian HF with an unknown ground state. The evolution of
such a system can be modeled using a time-dependent Hamiltonian H (s).

H (s) = A(s)HI + B(s)HF

where s ∈ [0, 1] quantifies the transition of the Hamiltonian from HI to HF by
using “scheduling functions” A(s) and B(s) s.t. A(0) B(0) and A(1) B(1).
An example of such scheduling functions is given in Fig. 36.2.

Denoting the known ground state of HI as |ψ(0) , according to the Schrodinger
equation this state will evolve as

H (s)|ψ(s) = i
∂

∂t
|ψ(s)

Evolving this system adiabatically, or infinitesimally slowly by assigning s =
0 : t = 0 and s = 1 : lim t → ∞, will guarantee that |ψ(1) will be a ground state

Fig. 36.2 Example of a
schedule function

Quantum Approximate Optimization Algorithm 287

Fig. 36.3 Evolution of the
eigenvalues for H (s) with
one crossing and the
minimum gap labeled

of HF . Figure 36.3 presents a visualization of the transition of eigenstates from HI

to HF .
Such infinitesimal transitions are not practical. They are dependent on the min-

imum gap between the ground state and first excited state, as shown in Fig. 36.3,
which may not be known either. Instead, one may develop a heuristic technique
by attempting to approximately solve this problem by evolving the quantum state
in finite time. This will result in a loss of the guaranteed ground state, but it may
still yield high-quality solutions. Furthermore, this evolution can be approximated
on a digital quantum computer using Trotterization, which will introduce some
discretization errors. However, in the limit of infinitely many Trotter steps, the
guarantee can be recovered.

We finally note that the initial Hamiltonian and final Hamiltonian are also
referred to as the mixer Hamiltonian and the cost Hamiltonian, respectively.

Weighted Max-Cut Problem
The Weighted Max-Cut problem is roughly described as a partitioning of a graph
into two disjoint graphs. The Max-Cut problem is a specific instance with equal
weights for all edges.

We define a graph G as G = {V , E,W } as a set of vertices V , edges E connecting
V , and a set of weights W associated with each edge. The Max-Cut problem is to
form a bipartite partition of V , i.e., VA and VB s.t. VA ∪ VB = V , VA ∩ VB = ∅,
such that the sum of the weights of edges between VA and VB is maximized.

As an example, consider the graph shown in Fig. 36.4 with 6 vertices and 9
edges with associated weights.

The Max-Cut solution for this problem is shown in Fig. 36.5, with the edges
contributing to the sum highlighted in red. Finding the Max-Cut solution for a
graph is NP-hard. However, classical heuristic approaches can find approximate or
good-quality solutions.

288 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

Fig. 36.4 Problem graph for
a weighted Max-Cut problem

Fig. 36.5 Optimal cut with
the two sets of vertices
colored

We can formulate this problem mathematically by assigning 0, 1 to the vertices
in VA, V B respectively, which leads to the cost function

C(x) =
n−1

i,j=0
Wijxi 1 − xj = −

n−1

i,j=0
Wijxixj +

n−1

i, j=0
Wijxi

where W is a matrix with entries Wij containing the weights associated with the
edge connecting vertices i and j.

For the problem shown in Fig. 36.5, the weight matrix and two equivalent
optimal solutions (with C xopt = 19) can be written as

W =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0 2 4 3
2 0 3 1
3 0 2 2

4 1 0 4 2
2 4 0

3 2 2 0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

, x =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
1
1

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1
0
1
1
0
0

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

This is readily translated to a QUBO problem with Qij = −Wij and bi =
n−1

i,j=0
W ij. In the QAOA, we want the cost function to take the form

ψ |HC |ψ c(ψ)

Quantum Approximate Optimization Algorithm 289

where HC is a cost Hamiltonian that is acting on |ψ . To apply the quantum
adiabatic theorem, we transform the QUBO problem into an Ising Hamiltonian
such that

HC |ψ c(ψ)|ψ

where HC is the cost (or final) Hamiltonian and c(ψ) is the cost associated with
the state |ψ . To achieve this, we substitute xi = 1−Z i

2 , converting the QUBO
variables into quantum operators acting on |ψ .

By substituting xi = 1−Z i
2 in C(x), we get

C(x) =
1

4

n−1

i,j=0
QijZiZj −

1

2

n−1

i=1
bi +

n−1

j=1
Qij Zi +

1

4

n−1

i,j=0
Qij +

1

2

n−1

i=0
bi

Since the constant terms 1
4

n−1

i,j=0
Qij + 1 2

n−1

i=0
bi do not contribute to the

optimization problem, we may simply drop them to arrive at the cost Hamiltonian

HC =
1

4

n−1

i,j=0
QijZiZj −

1

2

n−1

i=1
bi +

n−1

j=1
Qij Z i

We want to evolve a quantum state according to this Hamiltonian, as we
have discussed previously while introducing the quantum adiabatic theorem. The
Hamiltonian HC is in a form that can be readily Trotterized as

e−iγ HC ≈
n−1

i,j=0
e

− iγ
4 QijZiZj

⎛

⎝n−1

i=1
e
i γ
2 bi+

n−1

j=1
Qij Zi

⎞

⎠ = UZZ (γ)UZ (γ) = U HC (γ)

We note that exponential terms of the form e−iαZiZj can be implemented using
controlled RZ gates as discussed in Chap. 28: Hamiltonian Simulation Techniques.

QAOA
We now have most of the ingredients for the QAOA. We provide a recap before
proceeding with the remainder. The objective is to optimize a cost function cor-
responding to a combinatorial problem, in this case a Max-Cut problem. We
approximately optimize this cost function using a finite-time version of the quan-
tum adiabatic theorem, which requires an initial (mixer) Hamiltonian and a final
(cost) Hamiltonian. The process begins with the known ground state of the initial
Hamiltonian and evolves it toward the unknown ground state (optimal solution)
of the final Hamiltonian. The cost Hamiltonian has been discussed earlier; the
missing piece is the initial Hamiltonian (and its ground state) and the algorithm.

A commonly used mixer Hamiltonian is

HM =
n−1

i=0
Xi

290 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

where the Ij gate is implied for i j.
This Hamiltonian can be exactly exponentiated (since the terms commute) as

e−iβHM =
n−1

i=1
e−iβX i

It can also be diagonalized using Hadamard gates:

HM =
n−1

i=0
Xi =

n−1

i=0
HiZiHi = H ⊗n n−1

i=0
Zi H⊗n

where H is the Hadamard gate and Zi is the Pauli-Z operator. The ground state is
the uniform superposition:

H ⊗n|0 ⊗n

Given the parametrized mixer Hamiltonian and cost Hamiltonian, we can Trot-
terize the time evolution in discrete steps. The QAOA algorithm proceeds as
follows:

1. Prepare the ground state H ⊗n|0 of the mixer Hamiltonian.
2. Apply the mixer and cost Hamiltonians in alternating fashion for l layers, each

parameterized by γ1, γ2, . . . , γl and β1, β2, . . . , βl .
3. Update parameters to optimize the expected cost function value.
4. Measure the qubits at the end to obtain candidate solutions as bitstrings.

In the limit of infinite layers or infinite Trotter steps, the adiabatic theorem can be
recovered, which guarantees the optimal solution. There is a rich literature on the
QAOA and techniques for initializing parameters, which are beyond the scope of
this book.

We provide here an example of the QAOA algorithm applied to the weighted
Max-Cut problem described earlier.

Using the weight matrix W = −Q provided above, we can form the cost
Hamiltonian:

HC =
1

4

n−1

i,j=0
QijZiZj −

1

2

n−1

i=1
bi +

n−1

j=1
Qij Z i

The sampled bitstrings with their quasi-probabilities and cost are plotted in
Fig. 36.6:

#!/usr/bin/python3

from qiskit.quantum_info import SparsePauliOp

from qiskit.circuit.library import QAOAAnsatz

from qiskit.circuit import QuantumCircuit

Quantum Approximate Optimization Algorithm 291

Fig. 36.6 Results for the QAOA applied to a Max-Cut problem. The optimal cut has a high
probability of being sampled

import numpy as np

from scipy.optimize import minimize

from qiskit.primitives import StatevectorEstimator as Estimator

from qiskit.primitives import StatevectorSampler as Sampler

from matplotlib import pyplot as plt

Create a dictionary of all the weights for the vertices

weights = {(1,2):2, (1,4):2, (1,6):3, (2,4):1, (2,3):3, (3,6):2,
(3,5):2, (4,6):2, (4,5):4}

Create weight matrix W

n = max([max(key) for key in weights.keys()])

W = np.zeros((n,n))
for key in weights:

i,j = key
W[i-1,j-1] = weights[key]

W[j-1,i-1] = weights[key]

292 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

Create QUBO problem from weight matrix

Q = -W

b = np.zeros((n,1))
for i in range(n):

b[i] = np.sum(W[i,:])

Form Cost Hamiltonian from QUBO problem

This will be an Ising Hamiltonian

string_list = []
coeff_list = []
for i in range(n):

for j in range(n):

if Q[i,j]!=0:

string = ’I’*n
string = string[:i] + ’Z’ + string[i+1:]
string = string[:j] + ’Z’ + string[j+1:]
string_list.append(string)

coeff_list.append(Q[i,j]/4)

for i in range(n):

coeff = -b[i]/2

for j in range(n):

coeff += -Q[i,j]/2

string = ’I’*n
string = string[:i] + ’Z’ + string[i+1:]
if coeff!=0:

string_list.append(string)

coeff_list.append(coeff)

H_c = SparsePauliOp(string_list,coeff_list)
At this point using the following:

circuit = QAOAAnsatz(cost_operator=H_c, reps=2)

will be sufficient. The following lines prepare

the mixer Hamiltonian and initial state for

completeness of demonstration.

Form mixer Hamiltonian

string_list = []
coeff_list = []
for i in range(n):

string = ’I’*n
string = string[:i] + ’X’ + string[i+1:]

string_list.append(string)

coeff_list.append(1)

H_m = SparsePauliOp(string_list,coeff_list)

Quantum circuit to prepare initial state

Quantum Approximate Optimization Algorithm 293

initial_state = QuantumCircuit(n)
initial_state.h(range(n))

Create QAOA ansatz

circuit = QAOAAnsatz(cost_operator=H_c, mixer_operator=H_m, ini-

tial_state=initial_state, reps=5)

Define QAOA cost function,

return with -ve sign since we are maximizing using a scipy minimizer

def QAOA_cost(parameters, circuit, H_c, estimator):

pub = (circuit, H_c, parameters)

job = estimator.run([pub])
result = job.result()[0]
cost = result.data.evs
cost_history.append(cost)

return -cost

Set up Estimator primitive for optimization

estimator = Estimator()
Track optimization progress

cost_history = []
Guess initial parameters

init_params = np.ones(len(circuit.parameters))

Maximize the cost (cost returns -ve)

result = minimize(QAOA_cost,
init_params,

args=(circuit, H_c, estimator),

method=’L-BFGS-B’,

tol=1e-5,

)

Set up sampler primitive to get optimized results

sampler = Sampler()

Set up optimized circuit for sampling

optimized_circuit = circuit.assign_parameters(result.x)
optimized_circuit.measure_all()

pub = (optimized_circuit)
Sample circuit

shots = 100

job = sampler.run([pub],shots=shots)

counts = job.result()[0].data.meas.get_counts()

294 36 Notable Variational Algorithms: VQE, QAOA, and VQLS

Sort by number of counts

sorted_counts = [(key, counts[key]) for key in sorted

(counts,key=counts.get)]

Compute costs of each counts bitstring

def get_cost_from_string(string, Q, b):

x = [int(i) for i in string]

cost = np.einsum(’i,ij,j->’,x,Q,x) + np.einsum(’i,ij->’,x,b)
return cost

costs = [(key,get_cost_from_string(key,Q,b)) for (key,value) in
sorted_counts]

Plot results

fig, axes = plt.subplots(1,2, sharey=True, figsize=(10, 8))

axes[0].barh([i for (i,j) in sorted_counts],[j/shots for (i,j) in

sorted_counts], align=’center’)

axes[0].invert_xaxis()

axes[0].set_xlabel(’Quasiprobability’)

axes[0].set_ylabel(’Bitstrings’)

axes[0].yaxis.tick_right()

axes[1].barh([i for (i,j) in costs],[j for (i,j) in costs],

align=’center’)

axes[1].set_xlabel(’Cost’)

axes[1].set_xticks(list(range(0,20,1)))

plt.show()

Variational algorithms are flexible and can be applied to a variety of other prob-
lems. For example, [13] presents a variational fast-forwarding technique that uses
a Trotter circuit to train a fast-forwardable variational ansatz, reducing simulation
time and enabling longer Hamiltonian simulations on NISQ hardware. Variational
algorithms have also been explored for financial applications [14], cosmological
simulations [15], vehicle routing problems [16], and nonlinear PDEs [17, 18]. For
instance, [4] demonstrates the use of multiple copies of variational quantum states
to treat nonlinearities, showing exponential efficiency over matrix product states
and presenting experimental results. [5] introduces a Chebyshev feature map for
nonlinear PDEs, with simulation results for Navier–Stokes equations.

However, the classical cost of optimizing variational circuit parameters can
limit quantum advantage for some problems. In the worst case, optimizing varia-
tional quantum ansatze is NP-hard in general due to exponentially increasing local
minima with the number of parameters and the optimization landscape exhibiting
barren plateaus and narrow gorges [19]. Despite these drawbacks, variational quan-
tum algorithms are still expected to find utility in the fault-tolerant regime, e.g., as
a method for preparing approximate ground states for quantum phase estimation.

References 295

References

1. A. Peruzzo et al., “A variational eigenvalue solver on a photonic quantum processor,” Nat
Commun, vol. 5, no. 1, p. 4213, Jul. 2014, https://doi.org/10.1038/ncomms5213

2. P. J. Ollitrault et al., “Quantum equation of motion for computing molecular excitation energies
on a noisy quantum processor,” Phys. Rev. Research, vol. 2, no. 4, p. 043140, Oct. 2020, https://
doi.org/10.1103/PhysRevResearch.2.043140

3. S. Gocho et al., “Excited state calculations using variational quantum eigensolver with spin-
restricted ansätze and automatically-adjusted constraints,” npj Comput Mater, vol. 9, no. 1,
p. 13, Jan. 2023, https://doi.org/10.1038/s41524-023-00965-1.

4. A. Kandala et al., “Hardware-efficient variational quantum eigensolver for small molecules
and quantum magnets,” Nature, vol. 549, no. 7671, pp. 242–246, Sep. 2017, https://doi.org/
10.1038/nature23879

5. W. J. Huggins, J. Lee, U. Baek, B. O’Gorman, and K. B. Whaley, “A non-orthogonal varia-
tional quantum eigensolver,” New J. Phys., vol. 22, no. 7, p. 073009, Jul. 2020, https://doi.org/
10.1088/1367-2630/ab867b

6. C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, “Variational
quantum linear solver,” 2019, arXiv. https://doi.org/10.48550/ARXIV.1909.05820.

7. E. Cappanera, “Variational quantum linear solver for finite element problems: a Poisson equa-
tion test case,” TU Delft, 2021. [Online]. Available: http://resolver.tudelft.nl/uuid:deba389d-
f30f-406c-ad7b-babb1b298d87

8. C.J. Trahan, M. Loveland, N. Davis, E. Ellison, A variational quantum linear solver applica-
tion to discrete finite-element methods. Entropy, 25(4), 580 (2023). https://doi.org/10.3390/e25
040580

9. Y.Y. Liu et al., Application of a variational hybrid quantum-classical algorithm to heat conduc-
tion equation and analysis of time complexity. Phys. Fluids, 34(11), 117121 (2022). https://doi.
org/10.1063/5.0121778

10. Y. Liu et al., A variational quantum algorithm-based numerical method for solving potential
and Stokes flows (2023). arXiv. https://doi.org/10.48550/ARXIV.2303.01805.

11. H.-L. Liu et al., Variational quantum algorithm for the Poisson equation. Phys. Rev. A, 104(2),
022418 (2021). https://doi.org/10.1103/PhysRevA.104.022418

12. E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization algorithm (2014).
arXiv. https://doi.org/10.48550/ARXIV.1411.4028.

13. C. Cîrstoiu, Z. Holmes, J. Iosue, L. Cincio, P.J. Coles, A. Sornborger, Variational fast forward-
ing for quantum simulation beyond the coherence time. npj Quantum. Inf., 6(1), 82 (2020).
https://doi.org/10.1038/s41534-020-00302-0

14. D. Herman et al., Quantum computing for finance. Nat. Rev. Phys., 5(8), 450–465 (2023).
https://doi.org/10.1038/s42254-023-00603-1

15. P. Mocz, A. Szasz, Toward cosmological simulations of dark matter on quantum computers,
ApJ, 910(1), 29 (2021). https://doi.org/10.3847/1538-4357/abe6ac

16. T. Azfar, R. Ke, O.M. Raisuddin, J. Holguin-Veras, Quantum-assisted vehicle routing: Realiz-
ing QAOA-based approach on gate-based quantum computer (2025). arXiv: arXiv:2505.01614.
https://doi.org/10.48550/arXiv.2505.01614

17. M. Lubasch, J. Joo, P. Moinier, M. Kiffner, D. Jaksch, Variational quantum algorithms for non-
linear problems. Phys. Rev. A, 101(1), 010301 (2020). https://doi.org/10.1103/PhysRevA.101.
010301

18. O. Kyriienko, A. E. Paine, V.E. Elfving, Solving nonlinear differential equations with differ-
entiable quantum circuits. Phys. Rev. A, 103(5), 052416 (2021). https://doi.org/10.1103/Phy
sRevA.103.052416

19. M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, P.J. Coles, Challenges and opportunities in
quantum machine learning. Nat. Comput. Sci., 2(9), 567–576 (2022). https://doi.org/10.1038/
s43588-022-00311-3

https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevResearch.2.043140
https://doi.org/10.1103/PhysRevResearch.2.043140
https://doi.org/10.1038/s41524-023-00965-1
https://doi.org/10.1038/nature23879
https://doi.org/10.1038/nature23879
https://doi.org/10.1088/1367-2630/ab867b
https://doi.org/10.1088/1367-2630/ab867b
https://doi.org/10.48550/ARXIV.1909.05820
http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-babb1b298d87
http://resolver.tudelft.nl/uuid:deba389d-f30f-406c-ad7b-babb1b298d87
https://doi.org/10.3390/e25040580
https://doi.org/10.3390/e25040580
https://doi.org/10.1063/5.0121778
https://doi.org/10.1063/5.0121778
https://doi.org/10.48550/ARXIV.2303.01805
https://doi.org/10.1103/PhysRevA.104.022418
https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.1038/s41534-020-00302-0
https://doi.org/10.1038/s42254-023-00603-1
https://doi.org/10.3847/1538-4357/abe6ac
http://arxiv.org/abs/2505.01614
https://doi.org/10.48550/arXiv.2505.01614
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.101.010301
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.1103/PhysRevA.103.052416
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/s43588-022-00311-3

Part VII

Applications, Future Directions, and Open
Problems

This part presents real-world applications, emerging directions, and unresolved
challenges in quantum computing, with an emphasis on engineering, scientific
computing, and finance. The chapters in this part bridge the theoretical and algo-
rithmic frameworks developed in previous parts to their deployment in practical
scenarios.

Chapter 37, “Applications in Engineering and Scientific Computing”, sur-
veys proof-of-concept demonstrations and prototype workflows where quantum
algorithms have been used for simulation, optimization, and data analysis in
engineering contexts.

Chapter 38, “Quantum Machine Learning”, introduces the key models, tech-
niques, and practical considerations for applying quantum algorithms to learning
and inference tasks, with an emphasis on the interface between quantum and
classical computation.

Chapter 39, “Applications in Finance”, explores the use of quantum algorithms
for problems in financial modeling, including derivatives pricing and portfolio
optimization, highlighting both current capabilities and outstanding barriers.

Chapters in this part are intended to provide a realistic appraisal of where quan-
tum computing stands in relation to practical applications, emphasizing not only
current achievements but also the open problems and research directions that will
define the next phase of progress in the field.

https://doi.org/10.1007/978-3-032-03325-3_37
https://doi.org/10.1007/978-3-032-03325-3_38
https://doi.org/10.1007/978-3-032-03325-3_39

37Applications in Engineering
and Scientific Computing

In the previous part, algorithms for ordinary differential equations and partial dif-
ferential equations were discussed extensively. Here, we focus on use cases where
quantum computers may accelerate numerical solutions, distinguishing between
problems that require simulating quantum mechanics and those that do not—
roughly separated by nanoscale (quantum) and micro-to-macroscale (classical)
problems.

We begin by considering problems involving the simulation of quantum
mechanics. Quantum mechanical models provide the most accurate description of
many systems, but are typically computationally intractable on classical computers
without significant simplifications. A central example is the non-relativistic elec-
tronic structure problem, which seeks the minimum eigenvalue (and corresponding
eigenstate) of a system of interacting electrons and nuclei, whose Hamiltonian is
typically in atomic units:

H = −
N

i=1

1

2
∇2
i −

M

A=1

1

2MA
∇2
A −

N

i=1

M

A=1

Z A
riA

+
N

i=1

N

j>i

1

rij
+

M

A=1

M

B>A

ZAZ B
RAB

where MA are nuclear masses, ZA are nuclear charges, N is the number of electrons,
and M is the number of nuclei. Using the Born–Oppenheimer approximation to
“freeze” the nuclei, one gets the electronic Hamiltonian

Helec = −
N

i=1

1

2
∇2
i −

N

i=1

M

A=1

Z A
riA

+
N

i=1

N

j>i

1

rij

This is a high-dimensional problem, scaling as 3N . Discretizing the space
rapidly becomes infeasible. As an example, for a system with 20 electrons dis-
cretized with 10 grid points per spatial dimension, the state space is O 1060 .

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_37

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_37&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_37

300 37 Applications in Engineering and Scientific Computing

Instead, the electronic structure problem is typically recast in the “second-
quantization” framework [1] which is conducive to method development for both
classical and quantum computers.

The electronic structure problem enables prediction of key material proper-
ties—such as elastic moduli and thermal conductivities—from first principles, and
forms the basis of multiscale modeling. Classical approaches like density func-
tional theory (DFT) can treat systems with up to ∼ 102 − 10 3 electrons, but DFT
is unreliable for strongly correlated electrons. Thus, quantum electronic structure
problems are among the most likely early beneficiaries of quantum advantage, as
quantum computers are natively suited to such tasks.

We now turn to micro-macroscale problems, generally governed by classical
(often non-unitary) differential equations. Here, quantum algorithms for differen-
tial equations can potentially provide a speedup. However, loading classical data
into a quantum computer (state preparation) and extracting results (readout) present
significant data movement bottlenecks.

For example, in a finite element boundary value problem, one can either (a) dis-
cretize classically and upload the data to a quantum computer, or (b) construct the
discretized problem directly on the quantum device. The latter is preferable from
a data movement and resource standpoint. Nonetheless, Shannon entropy funda-
mentally limits how much information can be encoded and loaded from classical
descriptions.

It is also critical to noting that quantum computers are suited for computing
select properties or functionals of the solution, not the entire solution vector. While
much work has focused on preparing quantum states representing the solution,
efficient extraction of useful observables from these states remains a significant
challenge.

One particularly interesting application of quantum computers is in multiscale
modeling. In multiscale workflows spanning quantum to macro scales, a quan-
tum computer may accelerate nanoscale computations—e.g., providing material
properties to classical solvers at larger scales. Alternatively, one can envision end-
to-end quantum workflows, minimizing data movement, though such scenarios are
still aspirational.

Reference

1. A. Szabo, N.S. Ostlund, Modern quantum chemistry: introduction to advanced electronic
structure theory (Dover Publications Inc., Mineola, New York, 2012)

38Quantum Machine Learning

Machine learning (ML) has evolved to become a cornerstone of modern computa-
tional methods. Before delving into quantum machine learning (QML), we provide
a brief overview of ML and important concepts linking classical ML to QML.

The goal of ML is to develop techniques for computational tasks without
explicitly programming the solution. Instead, ML relies on data to “learn” the
task.

ML is broadly categorized into three problems:

• Supervised learning
• Unsupervised learning
• Reinforcement learning.

Supervised learning uses labeled datasets—pairs of inputs and desired outputs—to
train a model. Unsupervised learning trains models on unlabeled data to discover
patterns, groupings, and correlations. Reinforcement learning trains an agent to
develop a policy for coordinating a task, using feedback from the environment and
its current state.

ML models are used for a range of computational tasks, including.

• Classification: e.g., classifying tumors as benign or malignant using medical
images.

• Regression: e.g., predicting energy consumption using weather data.
• Clustering: e.g., market segmentation to identify key customer groups.
• Generation: e.g., generate metamaterial cell geometries satisfying a target

stress–strain response [1].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_38

301

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_38&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_38

302 38 Quantum Machine Learning

Fig. 38.1 Various
combinations of quantum/
classical datasets and ansatze
with examples

ML models span a broad spectrum, ranging from explainable techniques such
as linear regression and support vector machines to more opaque black-box
techniques like deep neural networks.

A unifying challenge of ML models is overparameterization. When an ML
model has too many free parameters, it tends to overfit the data, performing well on
training data but poorly on new, unseen data. Overfitting reduces generalizability.

To address overfitting, a combination of regularization and inductive bias is
used. Regularization penalizes model complexity, reflecting Occam’s razor. Induc-
tive bias refers to the predisposition of certain models toward a subset of possible
solutions. For example, convolutional neural networks are well-suited for image
processing due to translation invariance, locality, and hierarchical structure.

Major challenges in classical ML include generalizability, overfitting, and
underfitting. A growing concern is the computational cost and power consump-
tion, especially for large models—e.g., training modern large language models
(LLMs) can consume as much power as a small city.

Quantum machine learning (QML), much like classical machine learning,
encompasses a broad array of models and methodologies. However, in QML, there
is a foundational distinction that does not appear in the same way in classical ML:
Both the model (ansatz) and the data can be either classical or quantum.

• Ansatz here refers to the structure of the model or the functional form of the
mapping from input to output (for example, a neural network, a support vector
machine, and a parameterized quantum circuit).

• Data refers to the information that the model is trained on or the ground-truth
process mapping the inputs to outputs.

This gives rise to several possible scenarios (Fig. 38.1):

38 Quantum Machine Learning 303

1. Classical ansatz, classical data: The standard scenario in classical machine
learning (e.g., training a neural network on images).

2. Quantum ansatz, classical data: Quantum models (such as parameterized
quantum circuits) trained or used on data originating from classical sources.

3. Classical ansatz, quantum data: Classical models that process data generated
from quantum experiments or quantum sensors (less common, but possible).

4. Quantum ansatz, quantum data: Quantum models trained on quantum data—
this is considered the most promising avenue for realizing a true quantum
advantage, as quantum data can exhibit structures or correlations that are
exponentially difficult to represent or process classically.

In summary, the first step in characterizing any QML approach is to specify.

• Whether the data is classical (bitstrings, real-valued vectors, etc.) or quantum
(quantum states, results from quantum experiments).

• Whether the model/ansatz is classical (e.g., a traditional neural network) or
quantum (e.g., a quantum circuit with trainable gates).

This classification is fundamental because the potential advantages and challenges
of QML depend crucially on these choices. For instance, quantum models are
expected to provide their greatest benefits when both the data and the model
are quantum, due to the exponential complexity of quantum information when
represented classically.

We note that the application of various quantum algorithms, such as QLSAs,
to machine learning may also be considered instances of QML. In this chapter,
we focus on instances of QML that are more complex than a direct application
of general quantum algorithms to classical machine learning algorithms. With this
motivation, in the remainder of this chapter, we will discuss various aspects and
considerations of QML in general, along with various examples and configurations
of instances of QML.

We begin our discussion with one of the earliest and most conceptually simple
QML instances: quantum support vector machines [2].

Support vector machines are supervised ML models for classifying data by
mapping the input data X : x ∈ Rn to a higher dimensional space using a kernel
φ(x) ∈ R m, where m ≥ n, and then projecting onto R by computing the inner
product k : φ(xi), φ xj ∈ R. We denote the labels of each xi as yi s.t. Y : y ∈
{+1, − 1}. This method is referred to as a kernel trick.

A data point can then be classified as

y = sgn
n

i=1
wiyik xi, xj ∈ {+1, −1}

Training a support vector machine with the kernel trick requires computation
of the kernel matrix K where Kij = k xi, x j to optimize wi.

Since φ(·) resides in a high-dimensional space, computing the inner products
φ(xi), φ xj may be prohibitively expensive unless the kernel function φ(·) is

304 38 Quantum Machine Learning

Fig. 38.2 A one-layer
quantum neural network

chosen carefully. In a quantum support vector machine, the kernel matrix K is com-
puted using a quantum computer, and wi are optimized using classical methods.
One may compute

φ(xi), φ xj = 0|U (xi)†U xj |0

where U (·) is a parametrized quantum circuit. This expands the choice of kernels
beyond classically tractable kernels.

Next, we consider principal component analysis (PCA), an elementary tech-
nique for unsupervised learning. Given a dataset X , where each column of X
corresponds to a variable, the columns can be standardized as X̃i = Xi−μ i

σi
, and the

covariance matrix can be computed as

C = X̃ T X

An eigendecomposition C = V V T yields principal components (the largest
eigenvalues and their eigenvectors), reducing the dataset and revealing its main
correlations. A quantum algorithm for PCA has been developed [3]. Since the
proof uses density matrix formalism, we omit implementation details here.

We now consider the more “general” form of QML: Parametrized quantum
circuits with associated cost functions as introduced in Chap. 35: Variational
Algorithms: Theory Fig. 38.2.

A key ingredient in QML is encoding data as a quantum state. Beyond basis,
amplitude, and phase encoding, other encodings include angle encoding, dense
encoding, and feature maps based on Z, ZZ, and Pauli rotations. Data encoding
for quantum computations remains an active area of research.

Training parameterized quantum circuits presents several difficulties [4]. Like
classical ML models, these circuits can have many local minima, making global
optimization NP-hard. Overparameterized circuits may eliminate local minima but
risk overfitting.

The optimization landscape of parameterized quantum ansatzes can exhibit bar-
ren plateaus (exponentially vanishing gradients) and narrow gorges (exponentially
lower global minima) as the parameter count increases. Remedies include using
ansatze with greater inductive bias, measuring local rather than global observables,
and ensuring measurement qubits are not highly entangled with hidden layers.

Noise in NISQ hardware further complicates optimization; increasing circuit
depth amplifies the effects of noise and suppresses meaningful features in the
optimization landscape.

References 305

Before proceeding further, we state here a remarkable result in quantum
machine learning from [5]. Most supervised quantum machine learning models
are (equivalent but possibly sub-optimal) quantum kernel models. This profound
result can be summarized as follows.

Theorem Given a data encoding. |φ(x) for a classification problem. For most
quantum machine learning models, the model obtained using quantum support vector
machines is optimal in the m-dimensional subspace spanned by φ(·) and tractable.
Training variational ansatzes on the same embedding |φ(x) does not guarantee
an optimal model in this subspace, even if the non-convex cost function is globally
optimized, which is intractable (NP-hard) in general.

This result emphasizes the importance of the data embedding |φ(x) on the
expressibility and performance of QML models. We note that “tractable” here
does not imply efficient training or inference.

Recent work has expanded the scope of QML to generative diffusion models.
Classical diffusion models are computationally expensive due to an iterative appli-
cation of a neural network (typically a denoising model like a U-Net). Diffusion
models transform a Gaussian noise distribution into a target distribution matching
the training dataset. While this process is not necessarily unitary, the manipulation
of probability distributions is a particularly interesting and powerful application
for quantum computers. Quantum diffusion models aim to replace the denoising
model with a trainable quantum circuit [6, 7].

QML may also be a hybrid between classical and quantum models. While QML
models are restricted to unitary (linear) transformations and (linear) projections,
classical ML models rely heavily on nonlinear operations for expressibility.

QML models typically have the drawback of requiring access to a quantum
computer for both training and inference, and quantum computers are a scarce and
valuable resource in the NISQ era. To overcome this barrier, a classical “shadow
model” approach has been proposed, enabling deployment of trained models on
classical computers [8].

QML is an emerging field and is largely driven by experimental and empirical
evidence. For in-depth analysis and investigation of the scalability of QML, high-
quality hardware is required.

Beyond utilizing quantum computing as a tool for machine learning, machine
learning has also been successfully applied to improve the fidelity of quan-
tum computing. Machine learning models have been developed to optimize
transpilation and identify more effective error-correction schemes [9].

References

1. J.-H. Bastek, D.M. Kochmann, Inverse design of nonlinear mechanical metamaterials via video
denoising diffusion models. Nat. Mach. Intell., 5(12), 1466–1475 (2023). https://doi.org/10.
1038/s42256-023-00762-x

https://doi.org/10.1038/s42256-023-00762-x
https://doi.org/10.1038/s42256-023-00762-x

306 38 Quantum Machine Learning

2. D. Anguita, S. Ridella, F. Rivieccio, R. Zunino, Quantum optimization for training support vec-
tor machines. Neural Networks., 16(5–6), 763–770 (2003). https://doi.org/10.1016/S0893-608
0(03)00087-X

3. S. Lloyd, M. Mohseni, P. Rebentrost, Quantum principal component analysis. Nature. Phys.,
10(9), 631–633 (2014). https://doi.org/10.1038/nphys3029

4. M. Cerezo, G. Verdon, H.-Y. Huang, L. Cincio, P.J. Coles, Challenges and opportunities in quan-
tum machine learning. Nat. Comput. Sci., 2(9), 567–576 (2022). https://doi.org/10.1038/s43
588-022-00311-3

5. M. Schuld, Supervised quantum machine learning models are kernel methods (2021). arXiv:
arXiv:2101.11020. https://doi.org/10.48550/arXiv.2101.11020

6. A. Cacioppo, L. Colantonio, S. Bordoni, S. Giagu, Quantum diffusion models (2023). arXiv:
arXiv:2311.15444. https://doi.org/10.48550/arXiv.2311.15444

7. M. Kölle, G. Stenzel, J. Stein, S. Zielinski, B. Ommer, C. Linnhoff-Popien, Quantum denoising
diffusion models (2024). arXiv: arXiv:2401.07049. https://doi.org/10.48550/arXiv.2401.07049

8. S. Jerbi, C. Gyurik, S.C. Marshall, R. Molteni, V. Dunjko, Shadows of quantum machine learn-
ing. Nat. Commun., 15(1), 5676 (2024). https://doi.org/10.1038/s41467-024-49877-8

9. H. Wang et al., Transformer-QEC: Quantum error correction code decoding with transferable
transformers (2023). arXiv: arXiv:2311.16082. https://doi.org/10.48550/arXiv.2311.16082

https://doi.org/10.1016/S0893-6080(03)00087-X
https://doi.org/10.1016/S0893-6080(03)00087-X
https://doi.org/10.1038/nphys3029
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.1038/s43588-022-00311-3
http://arxiv.org/abs/2101.11020
https://doi.org/10.48550/arXiv.2101.11020
http://arxiv.org/abs/2311.15444
https://doi.org/10.48550/arXiv.2311.15444
http://arxiv.org/abs/2401.07049
https://doi.org/10.48550/arXiv.2401.07049
https://doi.org/10.1038/s41467-024-49877-8
http://arxiv.org/abs/2311.16082
https://doi.org/10.48550/arXiv.2311.16082

39Applications in Finance

While scientific and engineering computation is notorious for its reliance on large-
scale and high-performance computing, the financial industry also contributes
significantly to the global computational workload. Quantum computing has the
potential to accelerate several problems in finance. In this chapter, we introduce
key financial problems where quantum speedups may be possible.

Before presenting computational problems in finance, we introduce founda-
tional concepts in finance. Assets are resources with economic value that can be
owned or controlled. These include tangible assets (e.g., gold, wheat, crude oil),
and intangible financial instruments such as currency, stocks, options, derivatives,
and contracts.

Assets are typically traded on markets, where buyers and sellers determine
prices. A financial portfolio is simply a collection of different investments.

Financial derivatives are contracts whose value is “derived” from underlying
assets. In its simplest form, the underlying asset for a derivative could be a tangible
asset or commodity. A more complex derivative can be a mix of tangible assets,
commodities, stocks, options, sub-derivatives, and many other forms of financial
instruments. Even a loan contract can be traded, making it a financial instrument
in itself. Thus, the term "derivative" broadly covers any combination of financial
instruments with monetary value.

All assets involve risk—the possibility that its value may diminish, disappear,
or even become a liability. For example, fiat currencies are subject to the stability
of the governments backing them, among other factors. An example of an asset
with a risk of becoming a liability is a financial contract to receive barrels of crude
oil. During the 2020 coronavirus pandemic, the value of oil futures contracts fell
below zero due to impending penalties that contract owners would have to pay for
disruptions in the oil supply chain leading to an oversupply. Generally, high risk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2026
O. M. Raisuddin and S. De, Quantum Computing for Engineers,
https://doi.org/10.1007/978-3-032-03325-3_39

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-032-03325-3_39&domain=pdf
https://doi.org/10.1007/978-3-032-03325-3_39

308 39 Applications in Finance

comes with the possibility of high reward. For the same potential return, a rational
investor will always prefer lower risk.

To make informed decisions and maximize gains, predicting market trends
and optimizing investments are crucial. Better predictions and optimization give
market players a competitive advantage. Beyond market prediction and portfolio
optimization, financial institutions facilitate a tremendous number of transactions
around the clock. To minimize their losses, it is important to detect any fraudulent
transactions. These tasks are typically computationally expensive, and quantum
computing has the potential to accelerate them. We provide below a brief intro-
duction to these computational problems, and refer readers to a variety of excellent
references on these topics [1–7].

Derivatives Pricing and Risk Management

The prices of a derivative’s components fluctuate and may be correlated. A stochas-
tic model S : {0, 1}r → {0, 1}n, e.g., the Black–Scholes model, predicts the state
of the market. A payoff function f : {0, 1}n → R evaluates the derivative’s value
(V) at a given market state:

V = Ex∼S f (x)

Because these models are high-dimensional and stochastic, analytic solutions
are typically infeasible, so Monte Carlo methods are used. Quantum Monte Carlo
may be used to model and estimate predicted prices with a theoretical quadratic
speedup by encoding S as an algorithm A and f as a rotation operation R as
discussed in Chap. 25: Quantum Monte Carlo.

This quadratic speedup has several implications. Reducing the number of sam-
ples needed to predict the market can potentially allow faster prediction, which is
crucial in high-frequency trading. The other implication is that the same number
of samples yields a prediction with a quadratically smaller confidence interval,
improving the fidelity of the prediction (up to the fidelity of the model). Further-
more, quantum computing may even allow the simulation of more complex and
precise models that are simply intractable using classical computers.

Portfolio Optimization

Portfolio optimization seeks the best allocation of assets to maximize return and
minimize risk. Let N be the number of assets, with prices p ∈ R N , and expected
returns r ∈ R N . The investments may fluctuate in time and may be correlated with
each other, giving rise to the covariance matrix ∈ RN × N . The asset weights
w ∈ RN are chosen subject to.

a budget: ξ = pTw.

Portfolio Optimization 309

expected returns: μ = rTw.

and risk: wT w.

Given a desired return μ with the constraint that all of the budget is invested, a
convex quadratic optimization problem can be formed as

min
w∈RN

wT w : ξ = pT w, μ = rTw

This can be solved using the method of Lagrange multipliers as the linear
system.

⎡

⎣
0 0 μT

0 0 pT

r p

⎤

⎦

⎡

⎣
η
θ
w

⎤
⎦ =

⎡
⎣

μ

ξ

0

⎤
⎦

It has been suggested that quantum linear system algorithms may be used to
optimize this problem. This variant of portfolio optimization is often referred to
as an “unconstrained” optimization problem.

One may impose further constraints, e.g., a positivity constraint to enforce wi ≥
0 ∀ i, i.e., the investor may not sell assets they do not own, which leads to

min
w∈RN

wT w : ξ = pT w, μ = rT w ,wi ≥ 0 ∀ i

which is a constrained convex optimization problem that can also be solved in
polynomial time on a classical computer. However, quantum algorithms have been
proposed for a polynomial speedup.

Integer constraints drastically complicate the solution of portfolio optimization
problems. As an example, one may impose a constraint on the total number of
investments, i.e., the Hamming weight y =

i
bool(wi > 0) ≤ K where bool x = 0

for x = 0 and bool x = 1 otherwise. This leads to an optimization problem

min
w∈RN

wT w : ξ = pT w, μ = r Tw, y ≤ K

which is an NP-hard mixed integer programming problem. One may attempt to
approach such combinatorial problems using heuristic methods like QAOA.

Finally, we note that classical machine learning models are often employed for
fraud detection, for which quantum machine learning models are an active area of
research.

The examples provided in this chapter represent only a small subset of financial
problems that may benefit from quantum computing. A wide array of challenges in
asset pricing, risk assessment, transaction settlement, option pricing under complex
market dynamics, high-frequency trading strategies, and real-time fraud detection
could potentially be reformulated for quantum algorithms. However, the funda-
mental questions remain: Can these formulations be implemented with quantum

310 39 Applications in Finance

resources more efficiently than the best classical approaches? And, critically, can
quantum computers deliver consistent and actionable value at scale within the
constraints and complexities of real-world financial markets? The answer to these
questions is not merely academic—it is the billion (or perhaps trillion) dollar ques-
tion that will ultimately determine the true impact of quantum computing on the
financial industry.

References

1. A.S. Naik, E. Yeniaras, G. Hellstern, G. Prasad, S.K.L.P. Vishwakarma, From portfolio opti-
mization to quantum blockchain and security: a systematic review of quantum computing in
finance. Financ Innov., 11(1), 88 (2025). https://doi.org/10.1186/s40854-025-00751-6

2. A. Montanaro, Quantum speedup of Monte Carlo methods. Proc. R. Soc. A., 471(2181),
20150301 (2015). https://doi.org/10.1098/rspa.2015.0301

3. P. Rebentrost, B. Gupt, T.R. Bromley, Quantum computational finance: Monte Carlo pricing of
financial derivatives. Phys. Rev. A, 98(2), 022321 (2018). https://doi.org/10.1103/PhysRevA.
98.022321

4. D. An, N. Linden, J.-P. Liu, A. Montanaro, C. Shao, J. Wang, Quantum-accelerated multilevel
Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum,
5, 481 (2021). https://doi.org/10.22331/q-2021-06-24-481

5. D.J. Egger et al., Quantum computing for finance: state-of-the-art and future prospects. IEEE
Trans. Quantum Eng. 1, 1–24 (2020). https://doi.org/10.1109/TQE.2020.3030314

6. F. Fontanela, A. Jacquier, M. Oumgari, Short communication: A quantum algorithm for linear
PDEs arising in finance. SIAM J. Finan. Math., 12(4), SC98–SC114 (2021). https://doi.org/10.
1137/21M1397878

7. R. Orús, S. Mugel, E. Lizaso, Quantum computing for finance: Overview and prospects.
Reviews. Phy., 4, 100028 (2019). https://doi.org/10.1016/j.revip.2019.100028

Uncited References

8. D.P. DiVincenzo, D. Loss, Quantum information is physical. Superlatt. Microstruct., 2(3–4),
419–432 (1998). https://doi.org/10.1006/spmi.1997.0520

9. G.H. Low, N. Wiebe, Hamiltonian simulation in the interaction picture. arXiv:1805.00675.
https://doi.org/10.48550/arXiv.1805.00675

10. P.C.S. Costa, D. An, Y.R. Sanders, Y. Su, R. Babbush, D.W. Berry, Optimal scaling quantum
linear-systems solver via discrete adiabatic theorem. PRX Quantum, 3(4), 040303. https://doi.
org/10.1103/PRXQuantum.3.040303

11. B. M. Boghosian, W. Taylor, Quantum lattice-gas model for the many-particle Schrödinger
equation in d dimensions. Phys. Rev. E, 57(1), 54–66 (1998). https://doi.org/10.1103/Phy
sRevE.57.54

12. J. Yepez, Lattice-gas quantum computation. Int. J. Mod. Phys. C, 09(08), 1587–1596 (1998).
https://doi.org/10.1142/S0129183198001436

13. J. Yepez, Quantum lattice-gas model for computational fluid dynamics, Phys. Rev. E, 63(4),
046702 (2001). https://doi.org/10.1103/PhysRevE.63.046702

14. J. Yepez, Quantum lattice-gas model for the Burgers equation. J. Stat. Phys. 107(1/2), 203–224
(2002). https://doi.org/10.1023/A:1014514805610

15. G. E. Crooks, Gradients of parameterized quantum gates using the parameter-shift rule and
gate decomposition. (2019). arXiv. https://doi.org/10.48550/ARXIV.1905.13311

https://doi.org/10.1186/s40854-025-00751-6
https://doi.org/10.1098/rspa.2015.0301
https://doi.org/10.1103/PhysRevA.98.022321
https://doi.org/10.1103/PhysRevA.98.022321
https://doi.org/10.22331/q-2021-06-24-481
https://doi.org/10.1109/TQE.2020.3030314
https://doi.org/10.1137/21M1397878
https://doi.org/10.1137/21M1397878
https://doi.org/10.1016/j.revip.2019.100028
https://doi.org/10.1006/spmi.1997.0520
http://arxiv.org/abs/1805.00675
https://doi.org/10.48550/arXiv.1805.00675
https://doi.org/10.1103/PRXQuantum.3.040303
https://doi.org/10.1103/PRXQuantum.3.040303
https://doi.org/10.1103/PhysRevE.57.54
https://doi.org/10.1103/PhysRevE.57.54
https://doi.org/10.1142/S0129183198001436
https://doi.org/10.1103/PhysRevE.63.046702
https://doi.org/10.1023/A:1014514805610
https://doi.org/10.48550/ARXIV.1905.13311

References 311

16. K. Mitarai, M. Negoro, M. Kitagawa, K. Fujii, Quantum circuit learning. Phys. Rev. A, 98(3),
032309 (2018). https://doi.org/10.1103/PhysRevA.98.032309

17. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran, Evaluating analytic gradients on
quantum hardware. Phys. Rev. A, 99(3), 032331 (2019). https://doi.org/10.1103/PhysRevA.99.
032331

18. D. Wierichs, J. Izaac, C. Wang, C. Y.-Y. Lin, General parameter-shift rules for quantum gra-
dients. Quantum, 6, 677 (2022). https://doi.org/10.22331/q-2022-03-30-677

https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.1103/PhysRevA.99.032331
https://doi.org/10.22331/q-2022-03-30-677

	 Preface
	Suggested Paths for Different Readers

	 Contents
	Part IMathematical and Computational Preliminaries
	1 Linear Algebra and Probability
	Vectors, Bras, Kets, and Dirac Notation
	Matrices
	Rotation and Reflection Matrices
	Pauli Matrices and Pauli Basis
	Vector and Matrix Norms
	Condition Number
	Projectors
	Eigenvalue Problems
	Singular Value Decomposition
	Linear Systems of Equations
	Linear Iterative Methods: Stationary Point Iterations
	Krylov Subspace Methods
	Kronecker Products

	2 Polynomial Approximations
	Approximation Around a Point
	Approximation Over an Interval
	Analytic Functions of Matrices
	Matrix Exponentiation
	References

	3 Theory of Computing
	Automata and Turing Machines
	Variants of Turing Machines
	Universal Circuit Families
	References

	4 An Overview of Practical Classical Computing
	Transistors as Physical Logic Gates
	Combinational Circuits
	Sequential Circuits
	Memory Elements
	CPU Architecture
	Computer Programming
	Progress in Classical Computing
	References

	5 Information and Complexity Theory
	Classical Decision Problems and Complexity Classes
	Probabilistic and Quantum Complexity Classes
	Information is Physical
	References

	Part IIA Brief Introduction to Quantum Mechanics
	6 A Gentle Introduction to Quantum Mechanics
	References

	7 The Stern–Gerlach Experiment
	Beam Source
	Electron Spin
	Stern–Gerlach Device and Detector
	Stern–Gerlach Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	References

	8 Photon Polarization
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4

	Part IIIThe Quantum Computing Model
	9 Qubits, Quantum Registers, and Quantum Gates
	Qubits
	Registers of Qubits
	Quantum Gates
	References

	10 Quantum Measurements and Circuits
	Measurement Operators
	Bitstring Sampling
	Quantum Circuits
	Principle of Deferred Measurement
	References

	11 Superposition and Entanglement
	Reference

	12 Classical and Reversible Computation
	Classical Computation on Quantum Computers
	Reversible Computing
	Quantum Oracles
	References

	13 Access Models and Data Representation
	Sparse Access Model
	Block-Encoding Model
	Hermitian Dilation
	Pauli Basis and Decomposition
	References

	14 Limitations of Quantum Computers
	References

	15 Simon’s, Deutsch–Jozsa, and Bernstein–Vazirani Algorithms
	Deutsch–Jozsa Algorithm
	Bernstein–Vazirani Problem
	Simon’s Problem
	Hidden Subgroup Problem
	References

	Part IVProgramming Quantum Computers
	16 The Quantum Computing Stack
	Error Suppression
	Error Mitigation
	Error Correction
	References

	17 Libraries for Quantum Computing
	References

	Part VAlgorithmic Primitives, Subroutines, and Frameworks
	18 Phase Kickback
	Reference

	19 Quantum Fourier Transform
	Reference

	20 Quantum Phase Estimation
	Reference

	21 Trotterization
	References

	22 Linear Combination of Unitaries
	Reference

	23 Qubitization and Quantum Signal Processing
	Qubitization
	Quantum Signal Processing
	Quantum Eigenvalue Transformation and Quantum Singular Value Transformation
	References

	24 Amplitude Amplification and Estimation
	Quantum Amplitude Amplification
	Quantum Amplitude Estimation
	References

	25 Quantum Monte Carlo
	26 Matrix-Vector Multiplications and Affine Linear Operations
	Matrix-Vector Multiplication Using Block-Encoding
	Sequence of Matrix-Vector Multiplications
	Compression Gadget
	Uniform Singular Value Amplification

	Affine Linear Operations
	Block-Matrix Multiplication
	Post-processing and Boosting Success Probabilities

	References

	Part VIQuantum Algorithms
	27 Expectation Value Estimation
	Pauli Diagonalization
	Hadamard Test
	Quantum Amplitude Estimation
	SWAP Test
	References

	28 Hamiltonian Simulation Techniques
	Trotter Methods
	Taylor Series Approximation
	Quantum Signal Processing
	References

	29 Eigenvalue Problems
	Krylov Methods
	References

	30 Quantum Linear System Algorithms: Direct Methods
	HHL Algorithm
	LCU-Based Methods
	Quantum Signal Processing
	References

	31 Quantum Linear System Algorithms: Iterative Methods
	References

	32 Quantum Ordinary Differential Equation Algorithms: Block-Matrix Algorithms
	References

	33 Quantum Ordinary Differential Equation Algorithms: Time-Marching Algorithms
	References

	34 Quantum Partial Differential Equation Algorithms
	References

	35 Variational Algorithms: Theory
	References

	36 Notable Variational Algorithms: VQE, QAOA, and VQLS
	Variational Quantum Eigensolver
	Variational Quantum Linear Solver
	Quantum Approximate Optimization Algorithm
	References

	Part VIIApplications, Future Directions, and Open Problems
	37 Applications in Engineering and Scientific Computing
	Reference

	38 Quantum Machine Learning
	References

	39 Applications in Finance
	Derivatives Pricing and Risk Management
	Portfolio Optimization
	References

